2 1. Let $A = (\{q1, ..., q10\}, \{0,1\}, q1, \{q3,q7\})$ be some DFA. Assume you have computed the sets, $R^{k}_{i,j}$, for $0 \le k \le 10, 1 \le i \le n, 1, 1 \le j \le n$. In terms of the $R^{k}_{i,j}$, what is the language recognized by A?

 $L = R^{1\theta}_{1,3} + R^{1\theta}_{1,7}$

4 2. Write a Context Free Grammar for the language L, where L = { w | w ∈ {a,b}* and w has twice as many a's as b's }. Hint: You need to consider all possible relative orderings of a's and b's

 $S \rightarrow S a S a S b S | S a S b S a S | S b S a S a S | \lambda$

5 3. Use Myhill-Nerode to show that the following language L is not Regular.
L = { a^k b^{k²} | k > 0 }.
Hint: Use the right-invariant equivalence relation R_L, where x R_L y iff ∀z[xz∈L ⇔ yz∈L]

Consider the equivalence classes $[a^n]_{R_L}$, n > 0. The equivalence class $[a^i]_{R_L}$ is such that $a^i b^{i^2} \in L$ However, the equivalence class $[a^j]_{R_L}$ is such that $a^j b^{i^2} \in L$ iff i = j. Thus, each $[a^i]_{R_L}$ is a unique class and so there are an infinite number of such classes showing that L is not a Regular language. 7 4. Consider the language

 $L = \{ a^n b^n c^m | m > n \}.$

Let N be chosen by the P.L. Choose $w = a^N b^N c^{N+I} = uvwxy$, $|vwx| \le N$, |v| + |x| > 0.

- Case 1) vwx is over a's or b's or both but no c's, choose i = 2: uv^2xy^2z has at least N+1 a's or N+1 b's or at least N+1 of each. In all three cases, there are not sufficient c's to be greater than both the a's and b's
- Case 2) vwx is over c's or c's and b's. Set i=0 and we will have at least one fewer c's and so there will be at least as many a's as c's.

- 10 5. Present the CKY recognition matrix for the string abbaab assuming the Chomsky Normal Form grammar, G = ({S,A,B,C,D,X }, {a,b}, R, S), specified by the rules R:
 - $S \rightarrow AB \mid BA$
 - $A \rightarrow CX \mid a$
 - $B \rightarrow XD \mid b$
 - $\begin{array}{c} C \rightarrow XA \\ D \rightarrow BX \end{array}$
 - $D \rightarrow BX$ $X \rightarrow a \mid b$

	a	b	b	a	a	b
1	A,X	В,Х	В,Х	А,Х	А,Х	В,Х
2	S	D	S,D,C	С	S	
3	В	В	A	A		•
4	S,D	S,C,D	S,C		-	
5	В	A				
6	C,S,D		•			

Is abbaab in *L*(G)? <u>YES</u>

How do you know from above? <u>S appears in last cell of CKY matrix</u>

4 6. Give an explicit example of two Context Free Languages, L1 and L2, whose intersection is the non-Context Free Language { aⁿ bⁿ cⁿ | n ≥ 0 }. No grammars or proof is required.

L1 =
$$\{a^n \ b^n \ c^m \mid n, m \ge 0\}$$

$$L2 = \underline{\qquad} \{a^m \ b^n \ c^n \mid n, \ m \ge 0 \}$$

Give an explicit example of a Regular Language, **R**, whose intersection with the Context Sensitive $\mathbf{L} = \{ \mathbf{a^n} \ \mathbf{b^n} \ \mathbf{c^n} \cup \mathbf{a^n} \ \mathbf{b^n} \ | \ \mathbf{n} \ge \mathbf{0} \}$ is a Context Free, non-Regular Language. No grammars or proof is required, but you must describe the language produced by this intersection

 $\mathbf{R} = \underline{a^* b^*}$

 $\mathbf{L} \cap \mathbf{R} = \{a^n \ b^n \mid n \ge 0\}$

8 7. Prove that any class of languages, *C*, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under **huh** where $L \in C$, **R** is Regular, L and **R** are over the alphabet Σ , and

L huh $\mathbf{R} = \{ \mathbf{y} \mid \mathbf{y} \in \Sigma^+ \text{ and } \exists \mathbf{x}, \mathbf{z} \in \mathbf{R}^+, \text{ such that } \mathbf{x}\mathbf{y}\mathbf{z} \in \mathbf{L} \}.$ You may assume substitution $\mathbf{f}(\mathbf{a}) = \{\mathbf{a}, \mathbf{a}'\}$, and homomorphisms $\mathbf{g}(\mathbf{a}) = \mathbf{a}'$ and $\mathbf{h}(\mathbf{a}) = \mathbf{a}, \mathbf{h}(\mathbf{a}') = \lambda$. Here $\mathbf{a} \in \Sigma$ and \mathbf{a}' is a distinct new character associated with each $\mathbf{a} \in \Sigma$.

You must be very explicit, describing what is produced by each transformation you apply and what kind of language results.

L huh $R = h(f(L) \cap (g(R^+) \Sigma^+ g(R^+)))$

 $f(L) = \{ \underline{w} \mid w \in L \}$ where \underline{w} has some (or none) of its letters primed. f(L) is a CFL since CFLs are closed under substitution.

 $g(R^+) = \{y' | y \in R^+\}$ where y' has all of its letter primed. $g(R^+)$ is Regular since Regular languages are closed under Kleene + and homomorphism.

 $g(R^+) \Sigma^+ g(R^+) = \{xy'z \mid x, z R^+ \text{ and } y \in \Sigma^+, \text{ This is a Regular language since Regular languages are closed under concatenation.}$

 $f(L) \cap (g(R^+) \Sigma^+ g(R^+)) = \{x'yz' \mid xyz \in L \text{ and } x, z \in R^+\}$. This is a CFL since CFLs are closed under intersection with Regular.

L huh $R = h(f(L) \cap (g(R^+) \Sigma^+ g(R^+))) = \{y \mid \exists x, z \in R^+ \text{ where } xyz \in L\}$ is a CFL since CFLs are closed under homomorphism.

```
8 8. Consider the CFG G = ( { S, T, C, D }, { a, b, c, d }, R, S ) where R is:

S \rightarrow a T S | a T D

T \rightarrow b T S | b C
```

- $C \rightarrow c$
- $D \rightarrow d$
- **a.)** Present a pushdown automaton that accepts the language generated by this grammar. You may (and are encouraged) to use a transition diagram where transitions have arcs with labels of form $\mathbf{a}, \alpha \rightarrow \beta$ where $\mathbf{a} \in \Sigma \cup \{\lambda\}, \alpha, \beta \in \Gamma^*$. Note: You are allowed to use extended stack operations that push more than one symbol onto stack.

Bottom Up (BU) In state q (starting state) Shift: $a,\lambda/a; b,\lambda/b; c,\lambda/c; d,\lambda/d$ In state q (starting state) Reduce: $\lambda,aTS/S; \lambda,aTD/S; \lambda,bTS/T; \lambda,bC/T; \lambda,c/C; \lambda,d/D$ Accept: λ,S/\lambda$ (and enter state f)

OR Since in GNF can do In state q (starting state) $a,TS / S; a,TD / S; b,TS / T; b,C / T; c,\lambda / C; d,\lambda / D$ Accept: λ,S / \lambda$ (and enter state f)

Top Down (TD) In state q (starting and only state) $a,a / \lambda; b,b / \lambda; c,c / \lambda; d,d / \lambda$ $\lambda,S / aTS; \lambda,S / aTD; \lambda, T / bTS; \lambda, T / bC; \lambda,C / c; \lambda,D / d$

OR Since in GNF can do In state q (starting and only state) $a,S/TS; a,S/TD; b,T/TS; b,T/C; c,C/\lambda; d,D/\lambda$

b.) What parsing technique are you using? (Circle one) top-down or bottom-up

How does your PDA accept? (Circle one) final state or empty stack or final state and empty stackWhat is the initial stack content?What are your final states (if any)?BU: q; TU: SBU: f; TU: N/A

c.) Now, using the notation of **ID**s (Instantaneous Descriptions, **[q, x, z]**), describe how your PDA accepts strings generated by **G**.

Bottom Up [q, w, \$] |--* [f, λ , λ]; Top Down [q, w, S] |--* [q, λ , λ]

2 9. Consider the context-free language L = { aⁿ b^m | n<m }. What language results when we take the Max of this language? What about the Min? To help you recall definitions, here they are.

 $Max(L) = \{ w \mid w \in L, and if wy \in L, then y = \lambda \}$ Max says that a string is kept only if that string is not a proper prefix of another string in L Give your explicit answer for $L = \{ a^n b^m \mid n < m \}$ below $Max(L) = \emptyset$

 $\begin{array}{l} \operatorname{Min}(L) = \{ \ w \ | \ w \in L, \ \text{and if } xy = w \ \text{and } x \in L, \ \text{then } y = \lambda \ \} \\ \operatorname{Min \ says \ that \ a \ string \ is \ kept \ only \ if \ no \ proper \ prefix \ of \ that \ string \ is \ in \ L \\ \operatorname{Give \ your \ explicit \ answer \ for \ } L = \{ \ a^n \ b^m \ | \ n < m \ \} \ below \\ \operatorname{Min}(L) = \{ \ a^n \ b^{n+1} \ | \ n \ge 0 \ \} \end{array}$

- 10. Consider the context-free grammar $G = (\{ S, A, B \}, \{ a, b \}, R, S)$, where R is:
 - $$\begin{split} S &\to aAa \mid bBb \\ A &\to CA \mid AB \\ B &\to C \mid b \\ C &\to D \mid \lambda \\ D &\to abC \end{split}$$
- 3 a.) Remove λ -rules from G, creating an equivalent grammar G'. Show all rules. Nullable = { B, C, D } $S \rightarrow aAa \mid bBb \mid bb$ $A \rightarrow CA \mid AB \mid A$ // can omit the A or not $B \rightarrow C \mid b$ $C \rightarrow D$ $D \rightarrow abC \mid ab$
- 2 **b.**) Remove all **unit** rules from **G**', creating an equivalent grammar **G**''. Show all rules. Chain(S) = { S }; Chain(A) = { A }; Chain(B) = { B, C, D}; Chain (C) = { C, D}; Chain(D) = { D } $S \rightarrow aAa \mid bBb \mid bb$ $A \rightarrow CA \mid AB$ $B \rightarrow b \mid abC \mid ab$ $C \rightarrow abC \mid ab$ $D \rightarrow abC \mid ab$
- 2 c.) Remove all useless symbols, creating an equivalent grammar G'''. Show all rules. $Unproductive = \{A\}; Unreachable = \{D\}$ $S \rightarrow bBb \mid bb$ $B \rightarrow b \mid ab \mid abC$ $C \rightarrow abC \mid ab$
- 3 d.) Convert grammar G" to its Chomsky Normal Form equivalent, G^{iv}. Show all rules.

$$S \rightarrow \langle bB \rangle \langle b \rangle | \langle b \rangle \langle b \rangle$$

$$\langle bB \rangle \rightarrow \langle b \rangle B$$

$$B \rightarrow b | \langle a \rangle \langle b \rangle | \langle ab \rangle C$$

$$C \rightarrow \langle ab \rangle C | \langle a \rangle \langle b \rangle$$

$$\langle ab \rangle \rightarrow ab$$

$$\langle a \rangle \rightarrow a$$

$$\langle b \rangle \rightarrow b$$