
Final Exam Topics 1
• Regular languages

• Decision Problems
• Membership
• Emptiness
• Finiteness
• Σ*
• Equality
• Containment

• Closure
• Union/Concatenation/Star
• Complement
• Substitution/Quotient, Prefix, Infix, Suffix
• Max/Min

12/6/16 COT 4210 © UCF 1

Final Exam Topics 2
• Context free languages

• Writing a simple CFG
• Decision Problems

• Membership
• Emptiness
• Finiteness
• Σ* (undecidable)
• Equality (undecidable)
• Containment (undecidable)

• Closure
• Union/Concatenation/Star
• Intersection with Regular
• Substitution/Quotient with Regular, Prefix, Infix, Suffix

• Non-closure
• intersection, complement, quotient, Max/Min

• Pumping Lemma for CFLs

12/6/16 COT 4210 © UCF 2

Final Exam Topics 3

• Chomsky Hierarchy
(Red involve no constructive questions)

• Regular, CFG, CSG, PSG (type 3 to type 0)
• FSAs, PDAs, LBAs, Turing machines
• Length preservation or increase makes membership in associated

languages decidable for all but PSGs
• CFLs can be inherently ambiguous but that does not mean a language

that has an ambiguous grammar is automatically inherently ambiguous

12/6/16 COT 4210 © UCF 3

Final Exam Topics 4
• Computability Theory

• Decision problems: solvable (decidable, recursive), semi-decidable (recognizable, recursively
enumerable/re, generable), non-re

• A set is re iff it is semi-decidable
• If set is re and complement is also re, set is recursive (decidable)
• Halting problem (K0): diagonalization proof of undecidability

• Set K0 is re but complement is not
• Set K = { f | f(f) converges }
• Algorithms (Total): diagonalization proof of non-re
• Reducibility to show certain problems are not decidable or even non-re
• K and K0 are re-complete – reducibility to show these results
• Rice’s Theorem: All non-trivial I/O properties of functions are undecidable (weak and strong

versions)
• Use of quantification to discover upper bound on complexity

12/6/16 COT 4210 © UCF 4

Final Exam Topics 5
• Computability Applied to Formal Grammars

(Red only results not constructions that lead to these)
• Post Correspondence problem (PCP)

• Definition
• Undecidability (proof was only sketched and is not part of this course)
• Application to ambiguity and non-emptiness of intersections of CFLs and to non-

emptiness of CSLs
• Traces of Turing computations

• Not CFLs
• Single steps are CFLs (use reversal of second configuration)
• Intersections of pairwise correct traces are traces
• Complement of traces (including terminating traces) are CFL
• Use to show cannot decide if CFL, L, is S*
• L= S* and L = L2 are undecidable for CFLs

• PSG can mimic TM, so generate any re language; thus, membership in PSL is
undecidable, as is emptiness of PSL.

• All re sets are homomorphic images of CSLs (erase fill character)

12/6/16 COT 4210 © UCF 5

Final Exam Topics 6
• Complexity Theory

• Verifiers versus solvers: P versus NP
• Definitions of NP: verify in deterministic poly time vs solve in non-deterministic

polynomial time
• Co-P and co-NP; NP-Hard versus NP-Complete
• Basic idea behind SAT as NP-Complete
• Reduction of SAT to 3-SAT to Subset-Sum
• Equivalence of Subset-Sum to Partition
• Relation of Subset-Sum and Partition to multiprocessor scheduling
• Vertex cover, 3-coloring, register allocation, Independent set
• Gadgets for above

12/6/16 COT 4210 © UCF , 6

1. Let set A be recursive, B be re non-recursive and C be non-re. Choosing
from among (REC) recursive, (RE) re non-recursive, (NR) non-re,
categorize the set D in each of a) through d) by listing all possible categories.
No justification is required.
a.) D = ~C RE, NR
b.) D Í (AÈC) REC, RE, NR
c.) D = ~B NR
d.) D = B -A REC, RE

2. Prove that the Halting Problem (the set K0) is not recursive (decidable) within any formal model of computation. (Hint: A
diagonalization proof is required here.)

Assume we can decide the halting problem. Then there exists some total function Halt such that
1 if [x] (y) is defined

Halt(x,y) =
0 if [x] (y) is not defined

Here, we have numbered all programs and [x] refers to the x-th program in this ordering. We can view Halt as a
mapping from À into À by treating its input as a single number representing the pairing of two numbers via the one-one
onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1
with inverses <z>1 = exp(z+1,1) and <z>2 = (((z + 1) // 2 <z>1) – 1) // 2

Now if Halt exist, then so does Disagree, where
0 if Halt(x,x) = 0, i.e, if Fx (x) is not defined

Disagree(x) =
µy (y == y+1) if Halt(x,x) = 1, i.e, if Fx (x) is defined

Since Disagree is a program from À into À , Disagree can be reasoned about by Halt. Let d be such that Disagree = Fd,
then

Disagree(d) is defined Û Halt(d,d) = 0 ÛFd (d) is undefined Û Disagree(d) is undefined
But this means that Disagree contradicts its own existence. Since every step we took was constructive, except for the
original assumption, we must presume that the original assumption was in error. Thus, the Halting Problem is not
solvable.

3.Using reduction from the known undecidable HasZero,
HZ = { f | $x f(x) = 0 }, show the non-recursiveness (undecidability) of the
problem to decide if an arbitrary recursive function g has the property
IsZero, Z = { f | "x f(x) = 0 }.

HZ = { f | $x $t [STP(f, x, t) & VALUE(f, x, t) == 0] }
Let f be the index of an arbitrary effective procedure.
Define gf(y) = 1 - $x $t [STP(f, x, t) & VALUE(f, x, t) == 0]
If $x f(x) = 0, we will find the x and the run-time t, and so we will
return 0 (1 – 1)
If "x f(x) ¹ 0, then we will diverge in the search process and never
return a value.

Thus, f Î HZ iff gf Î Z = { f | "x f(x) = 0 }.

6. Prove that any class of languages, C, closed under union, concatenation, intersection with regular languages,
homomorphism and substitution (e.g., the Context-Free Languages) is closed under MissingMiddle, where,
assuming L is over the alphabet S,
MissingMiddle(L) = { xz | $y Î S* such that xyz Î L }
You must be very explicit, describing what is produced by each transformation you apply.

Define the alphabet S’ = { a’ | aÎS }, where, of course, a’ is a “new” symbol, i.e., one not in S.

Define homomorphisms g and h, and substitution f as follows:
g(a) = a’ "aÎS h(a) = a ; h(a’) = l "aÎS f(a) = {a, a’ }

"aÎS

Consider R = S* • g(S*) • S* = { x y’ z | x, y, z ÎS* and y’=g(y) ÎS’* }
S* is regular since it is the Kleene star closure of a finite set.
g(S*) is regular since it is the homomorphic image of a regular language.
R is regular as it is the concatenation of regular languages.

Now, f(L) = { f(w) | w Î L } is in C since C is closed under substitution. This language is the set of
strings in L with randomly selected letters primed. Any string wÎL gives rise to 2|w| strings in f(L).

f(L) Ç R = { x y’ z | x y z Î L and y’=g(y) } is in C since C is closed under intersection with regular
languages.

MissingMiddle(L) = h(f(L) Ç R) = { x z | $y Î S* such that xyz Î L } which is in C, since C is closed
under homomorphism. Q.E.D.

7. Use PCP to show the undecidability of the problem to determine if the intersection of two context free
languages is non-empty. That is, show how to create two grammars GA and GB based on some instance P =
<<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA) Ç L(GB) ¹ f iff P has a solution. Assume that P is
over the alphabet S.You should discuss what languages your grammars produce and why this is relevant, but no
formal proof is required.

GA = ({ A } , S È { [i] | 1≤i≤n } , A , PA } GB = ({ B } , S È { [i] | 1≤i≤n } , B , PB }

PA : A ® xi A [i] | xi [i] PB : A ® yi B [i] | yi [i]

L(GA) = { xi1 xi2 … xip [ip] … [i2] [i1] | p ³ 1, 1 ≤ it ≤ n, 1 ≤ t ≤ p }

L(GB) = { yj1 yj2 … yjq [jq] … [j2] [j1] | q ³ 1, 1 ≤ ju ≤ n, 1 ≤ u ≤ q }

L(GA) Ç L(GB) = { w [kr] … [k2] [k1] | r ³ 1, 1 ≤ kv ≤ n, 1 ≤ v ≤ r }, where

w = xk1 xk2 … xkr = yk1 yk2 … ykr

If L(GA) Ç L(GB) ¹ f then such a w exists and thus k1 , k2 , … , kr is a solution to this instance of PCP.
This shows that a decision procedure for the non-emptiness of the intersection of CFLs implies a decision
procedure for PCP, which we have already shown is undecidable. Hence, the non-emptiness of the
intersection of CFLs is undecidable. Q.E.D.

8.Consider the set of indices CONSTANT = { f | $K "y [jf(y) = K] }. Use Rice’s Theorem to
show that CONSTANT is not recursive. Hint: There are two properties that must be
demonstrated.

First, show CONSTANT is non-trivial.
Z(x) = 0 is in CONSTANT
S(x) = x+1 is not in CONSTANT
Thus, CONSTANT is non-trivial

Second, let f, g be two arbitrary computable functions with the same I/O behavior.
That is, "x, if f(x) is defined, then f(x) = g(x); otherwise both diverge, i.e., f(x)­ and

g(x)­
Now, f Î CONSTANT

Û $K "x [f(x) = K] by the definition of CONSTANT
Û"x [g(x) = C] where C is the instance of K above, since "x [f(x) = g(x)]
Û $K "x [g(x) = K] from above
Û g Î CONSTANT by the definition of CONSTANT

Since CONSTANT meets both conditions of Rice’s Theorem, it is undecidable. Q.E.D.

9. Show that CONSTANT ºm TOT, where TOT = { f | "y jf(y)¯ }.

CONSTANT ≤m TOT
Let f be an arbitrary effective procedure.

Define gf by
gf (0) = f(0)
gf (y+1) = f(y+1) + µ z [f(y+1) = f(y)]

Now, if f Î CONSTANT then "y [f(y)¯ and [f(y+1) = f(y)]].
Under this circumstance, µ z [f(y+1) = f(y)] is 0 for all y and gf (y) = f(y) for all y.
Clearly, then gf Î TOT

If, however, f Ï CONSTANT then $y [f(y+1) ¹ f(y)] or $y f(y)­.
Choose the least y meeting this condition.

If f(y)­ then gf (y)­ since f(y) is in gf (y)’s definition (the 1st term).
If f(y)¯ but [f(y+1) ¹ f(y)] then gf (y)­ since µ z [f(y+1) = f(y)]­ (the 2nd term).
Clearly, then gf Ï TOT

Combining these, f Î CONSTANT Û gf Î TOT and thus CONSTANT ≤m TOT

TOT ≤m CONSTANT
Let f be an arbitrary effective procedure.

Define gf by gf (y) = f(y) – f(y)
Now, if f Î TOT then "y [f(y)¯] and thus "y gf (y) = 0 .
Clearly, then gf Î CONSTANT

If, however, f Ï TOT then $y [f(y)­] and thus, $y [gf (y)­]. Clearly,
then gf Ï CONSTANT
Combining these, f Î TOT Û gf Î CONSTANT and thus
TOT ≤m CONSTANT

Hence, CONSTANT ºm TOT. Q.E.D.

10. Why does Rice’s Theorem have nothing to say about each of the following? Explain by showing some
condition of Rice’s Theorem that is not met by the stated property.
a.) AT-LEAST-LINEAR = { f | "y jf(y) converges in no fewer than y steps }.

We can deny the 2nd condition of Rice’s Theorem since
Z, where Z(x) = 0, implemented by the TM R converges in one step no matter what x is and hence
is not in AT-LEAST-LINEAR
Z’, defined by TM L R R, is in AT-LEAST-LINEAR since it takes over 2*|input| steps.

However, "x [Z(x) = Z’(x)], so they have the same I/O behavior and yet one is in and the other is
out of AT-LEAST-LINEAR, denying the 2nd condition of Rice’s Theorem

b.) HAS-IMPOSTER = { f | $ g [g≠f and "y [jg(y) = jf(y)]] }.

We can deny the 1st condition of Rice’s Theorem since all functions have an imposter. To see this,
consider, for any function f, the equivalent but distinct function g(x) = f(x) + 0. Thus, HAS-
IMPOSTER is trivial since it is equal to À, the set of all indices.

14. Use the Pumping Lemma for CFLs to show:
{ ww | w is over {a,b} } is not Context Free

Assume the language L = { ww | w is over {a,b} } is Context Free. Let N>0 be the value
associated with L by the Pumping Lemma for Context Free languages.
aNbNaNbN Î L.

By Pumping Lemma, aNbNaNbN = uvwxy, for some strings u,v,w,x,y over {a,b},
where |vx| > 0, |vwx| ≤ N and "i≥0 uviwxiy Î L.

All cases collapse into the following analysis. vwx must include at most one of the ‘a’
sequences and at most one of the ‘b’ sequences; moreover it must have at least one of
these cases (first ‘a’ sequence but not second; first ‘b’ sequence but not second; second
‘a’ sequence but not first; or second ‘b’ sequence but not first). Set i=0 and we have
removed letters from one of the ‘a’ sequences and/or one of the ‘b’ sequences, but not
the other. This denies that uwy is in L, thereby contradicting the Pumping Lemma.

15. Write a context-free grammar for the complement of
{ ww | w is over {a,b} }

S ® L<Odd> | AB | BA
<Odd> ® L<Even> | l
<Even> ® L<Odd>
A ® L A L | a
B ® L B L | b
L ® a | b

23

Sample	Question#5

5. Let	S be	an	re	(recursively	enumerable),	non-recursive	set,	and	T be	
an	re,	possibly	recursive	set.	Let	
E	=	{	z	|	z	=	x	+	y,	where	x	Î S	and	y	Î T	}.	
Answer	with	proofs,	algorithms	or	counterexamples,	as	
appropriate,	each	of	the	following	questions:
(a) Can	E be	non	re?	No.	If	T	=	∅ then	E	is	recursive.	
Assume	S	is	non-empty	and	S	and	T	are	enumerated	by	fS,	fT,	resp.	
Then	fE(<x,y>)	=	fS(x)	+	fS(y)	enumerates	E.
(b) Can	E be	re	non-recursive?	Yes.	T	=	{0},	E	=	S
(c) Can	E be	recursive?	Yes,	T=ℵ,	E	=	{	x	|	x	≥	min	value	in	S	}

12/6/16 COT 4210 © UCF

12/6/16

Assignment # 8.1 Key
1. Use	reduction	from	Halt to	show	that	one	cannot	decide	REPEATS,	where

REPEATS	=	{	f	|	for	some	x	and	y,	x	≠	y,	jf(x)↓,	jf(y)↓	and	jf(x)	==	jf(y)	}
Let	f,x be	an	arbitrary	pair	of	natural	numbers.	<f,x>	is	in	Halt	iff jf(x)¯
Define	g	by	jg(y)	=	jf(x)	- jf(x),	for	all	y.
Clearly,	jg(y)	=	0,	for	all	y,	iff jf(x)¯,	and	jg(y)­,	for	all	y,	otherwise.	
Summarizing,	<f,x>	is	in	Halt	implies	g	is	in	REPEATS	and	<f,x>	is	not	in	Halt	
implies	g	is	not	in	REPEATS
Halt	£m REPEATS	as	we	were	to	show.
Note:	I	have	not	overloaded	the	index	of	a	function	with	the	function	in	my	proof,	
but	I	do	not	mind	if	you	do	such	overloading.

24COT 4210 © UCF

12/6/16

Assignment # 8.2 Key
2. Show	that	REPEATS	reduces	to	Halt.	(1	plus	2	show	they	are	

equally	hard)
Let	f	be	an	arbitrary	natural	number.	f	is	in	REPEATS	iff for	some	x	and	
y,	x	≠	y,	jf(x)↓,	jf(y)↓	and	jf	(x)	==	jf(y)	
Define	g	by	jg(z)	=	∃<x,y,t>	[STP(f,x,t)	&	STP(f,y,t)	&	(x≠y)	&	
(VALUE(f,x,t)	=	(VALUE(f,y,t))],	for	all	z.
Clearly,	jg(z)	=	1,	for	all	z,	iff there	is	some	pair,	x,y,	such	that	jf(x)¯
and	jf(y)¯ and	jf(x)	=	jf(y),	and	jg(z)­,	for	all	z,	otherwise.	
Summarizing,	f	is	in	REPEATS	iff g	is	in	Halt	and	so	
REPEATS	£m Halt	as	we	were	to	show.

25COT 4210 © UCF

12/6/16

Assignment # 8.3 Key
3. Use	Reduction	from	Total	to	show	that	DOUBLES	is	not	even	re,	

where
DOUBLES	=	{	f	|	for	all	x,	jf(x)↓,	jf(x+1)↓	and	jf(x+1)=2*jf(x)	}

Let	f	be	an	arbitrary	natural	number.	f	is	in	Total	iff∀x	jf(x)	¯
Define	g	by	jg(x)	=	jf(x)	- jf(x),	for	all	x.
Clearly,	jg(x)	=	0,	and	so	jg(x+1)	=	2*jg(x)	=	0	for	all	x,	iff∀x	jf(x)¯;	
otherwise	jg(x)­ for	some	x.	
Summarizing,	f	is	in	Total	iff g	is	in	DOUBLES	and	so	
TOTAL	£m DOUBLES	as	we	were	to	show.

26COT 4210 © UCF

12/6/16

Assignment # 8.3 Alternate Key
3. Use	Reduction	from	Total	to	show	that	DOUBLES	is	not	even	re,	

where
DOUBLES	=	{	f	|	for	all	x,	jf(x)↓,	jf(x+1)↓	and	jf(x+1)=2*jf(x)	}

Let	f	be	an	arbitrary	natural	number.	f	is	in	Total	iff∀x	jf(x)	¯
Define	g	by	jg(x)	=	jf(x)	- jf(x)+2^x	for	all	x.
Clearly,	jg(x)	=	2^x,	and	so	jg(x+1)	=	2*jg(x)	=	2^(x+1)	for	all	x,	iff∀x	
jf(x)¯;	otherwise	jg(x)­ for	some	x.	
Summarizing,	f	is	in	Total	iff g	is	in	DOUBLES	and	so	
TOTAL	£m DOUBLES	as	we	were	to	show.

27COT 4210 © UCF

12/6/16

Assignment # 8.4 Key
4. Show	DOUBLES reduces	to	Total.	(4	plus	5	show	they	are	equally	

hard)
Let	f	be	an	arbitrary	natural	number.	f	is	in	DOUBLES	iff∀x	jf	(x)↓,	
jf(x+1)↓	and	jf	(x+1)=2*jf	(x).
Define	g	by	jg(x)	=	µy[jf(x+1)	=	2*jf(x)],	for	all	x.
Clearly,	jg(x)↓,	for	all	x,	iff∀x	jf(x)↓,	jf(x+1)↓	and	jf(x+1)=2*jf(x);	
otherwise	jg(x)­ for	some	x.	
Summarizing,	f	is	in	DOUBLES	iff g	is	in	Total	and	so	
DOUBLES	£m TOTAL	as	we	were	to	show.

28COT 4210 © UCF

12/6/16

Assignment # 8.5 Key
5. Use	Rice’s	Theorem	to	show	that	REPEATS	is	undecidable	
First,	REPEATS	is	non-trivial	as	C0(x)	=	0	is	in	REPEATS	and	S(x)	=	x+1	is	
not.
Second,	REPEATS	is	an	I/O	property.	
To	see	this,	let	f	and	g	are	two	arbitrary	indices	such	that	
∀x	[jf(x)	=	jg(x)]
f	∈ REPEATS	iff∃ y,z,	y	≠	z,	such	that	jf(y)↓,	jf(z)↓	and	jf(y)	=	jf(z)	
iff,	since∀x [jf(x)	=	∀x	jg(x)],	∃ y,z,	y	≠	z,	y	≠	z,	(same	y,z as	above)	
such	that	jg(y)↓,	jg(z)↓	and	jg(y)	=	jg(z)	iff g	∈ REPEATS.	
Thus,	f	∈ REPEATS	iff g	∈ REPEATS.

29COT 4210 © UCF

12/6/16

Assignment # 8.6 Key
6. Use Rice’s Theorem to show that DOUBLES	is undecidable
First,	DOUBLES	is	non-trivial	as	C0(x)	=	0	(2*0	=	0)	is	in	DOUBLES	and	
S(x)	=	x+1	is	not.
Second,	DOUBLES	is	an	I/O	property.
To	see	this,	let	f	and	g	are	two	arbitrary	indices	such	that	
∀x	[jf(x)	=	jg(x)].	
f	∈ DOUBLES	iff for	all	x,	jf(x)↓,	jf(x+1)↓	and	jf(x+1)=2*jf	(x)	iff,	
since	∀x	[jf(x)	=	jg(x)],	for	all	x,	jg(x)↓,	jg(x+1)↓	and	
jg(x+1)=2*jg(x)	iff g	∈ DOUBLES.	
Thus,	f	∈ DOUBLES	iff g	∈ DOUBLES.

30COT 4210 © UCF

12/6/16

Assignment # 9.1a Key
1. Use	quantification	of	an	algorithmic	predicate	to	estimate	the	

complexity	(decidable,	re,	co-re,	non-re)	of	each	of	the	following,	
(a)-(d):

a)REPEATS	=	{	f	|	for	some	x	and	y,	x	≠	y,	f(x)↓,	f(y)↓	and	f(x)	==	f(y)	}	

∃<x,y,t>[STP(f,x,t)	&	STP(f,y,t)	&	(x≠y)	&	(VALUE(f,x,t)	=	(VALUE(f,y,t)	
)]
RE

31COT 4210 © UCF

12/6/16

Assignment # 9.1b Key
b) DOUBLES	=	{	f	|	for	all	x,	f(x)↓,	f(x+1)↓	and	f(x+1)=2*f(x)	}	

∀x∃t	[STP(f,x,t)	&	STP(f,x+1,t)	&	(2*VALUE(f,x,t)	=	(VALUE(f,x+1,t))]	
Non-RE,	Non-Co-RE

32COT 4210 © UCF

12/6/16

Assignment # 9.1c Key
c) DIVEVEN	=	{	f	|	for	all	x,	f(2*x)↑	}	

∀<x,t>	[~STP(f,2*x,t)]	
Co-RE

33COT 4210 © UCF

12/6/16

Assignment # 9.1d Key
d) QUICK10={	f	|	f(x),	for	all	0≤x≤9,	converges	in	at	most	x+10	steps	}

STP(f,0,10)	&	STP(f,1,11)	&	… &	STP(f,9,19)	
or
∀x0≤x≤9	[STP(f,x,x+10)]

REC

34COT 4210 © UCF

12/6/16

Assignment # 9.21 Key
1. Let	sets	A	be	recursive	(decidable)	and	B be	re	non-recursive	

(undecidable).	
Consider	C	=	{	z	|	min(x,y), where	x	Î A	and	y	Î B	}.	For	(a)-(c),	
either	show	sets	A and	B with	the	specified	property	or	
demonstrate	that	this	property	cannot	hold.	

a) Can	C be	recursive?	
YES.	Consider	A	=	{0}.	B	=	Halt.	C	=	{0}

35COT 4210 © UCF

12/6/16

Assignment # 9.2b Key
b) Can	C be	non-recursive?	
YES.	Consider	A	=	{	2x	|	x	Î N }.	B	=	{	2x+1	|	x	Î Halt}.	C	=	A	∪ B.	This	
is	semi-decidable	but	non	re	as	Halt	is	reducible	to	C.

36COT 4210 © UCF

12/6/16

Assignment # 9.2c Key
c) Can	C be	non-re?	
No.	Can	enumerate	C		as	follows.
First	if	A	is	empty	then	C	is	empty	and	so	RE	by	definition.
If	A	is	non-empty	then	A	is	enumerated	by	some	algorithm	fA as	
recursive	sets	are	RE.
As	B	is	non-recursive	RE,	then	it	is	non-empty	and	enumerated	by	
some	algorithm	fB.
Define	fC by	fC(<x,y>)	=	min(fA(x),fB(y)).	fC is	clearly	an	algorithm	as	it	is	
the	composition	of	algorithms.	The	range	of	fC is	then	{	z	|	min(x,y),
where	x	Î A	and	y	Î B	} =	C	and	so	C	must	be	RE.

37COT 4210 © UCF

