
Generally useful information.

• The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2.

• The minimization notation µ y [P(…,y)] means the least y (starting at 0) such that P(…,y) is
true. The bounded minimization (acceptable in primitive recursive functions) notation
µ y (u£y£v) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true.
Unlike the text, I find it convenient to define µ y (u£y£v) [P(…,y)] to be v+1, when no y
satisfies this bounded minimization.

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and
predicate ~P(x) is the logical complement of predicate P(x).

• The minus symbol, –, when applied to sets is set difference, so S – T = {x | xÎS && xÏT}.

• The absolute value, |z|, is the magnitude of z. Thus, |x-y| is the difference between x and y, when
x and y are both non-negative.

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus,
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and
false is 0 in formulas like y ´ P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)).

• A set S is recursive if S has a total recursive characteristic function cS, such that x Î S Û cS(x).
Note cS is a predicate. Thus, it evaluates to 0 (false), if x Ï S.

• When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following
equivalent characterizations:
1. S is either empty or the range of a total recursive function fS.

2. S is the domain of a partial recursive function gS.
3. S is recognizable by a Turing Machine.

• If I say a function g is partially computable, then there is an index g (I know that’s overloading,
but that’s okay as long as we understand each other), such that Fg(x) = F(g, x) = g(x). Here F is
a universal partially recursive function.
Moreover, there is a total recursive function STP, such that
STP(g. x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.
STP(g. x, t) is 0 (false), otherwise.
Finally, there is another total recursive function VALUE, such that
VALUE(g. x, t) is g(x), whenever STP(g. x, t).
VALUE(g. x, t) is defined but meaningless if ~STP(g. x, t).

• The notation f(x)¯ means that f converges when computing with input x, but we don’t care about
the value produced. In effect, this just means that x is in the domain of f.

• The notation f(x) means f diverges when computing with input x. In effect, this just means that
x is not in the domain of f.

• The Halting Problem for any effective computational system is the problem to determine of an
arbitrary effective procedure f and input x, whether or not f(x)¯. The set of all such pairs is a
classic re non-recursive one. The set of all such <f,x> is denoted K0. A related set K is the set of
all f that halt on their own indices. Thus, K = { f | Ff(f) ¯ } and K0 = {<f,x> |Ff(x)¯ }

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f,
whether or not f is an algorithm (halts on all input). The set of all such function indices is a
classic non re one and is often called TOTAL.

COT 4210 Fall 2016 Final Exam Sample Questions

 1. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC)
recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by
listing all possible categories. No justification is required.
a.) D = ~C

b.) D Í (AÈ C)
c.) D = ~B

d.) D = B - A

 2. Prove that the Halting Problem (the set K0) is not recursive (decidable) within any formal model of
computation. (Hint: A diagonalization proof is required here.)

 3. Using reduction from the known undecidable HasZero, HZ = { f | $x f(x) = 0 }, show the non-
recursiveness (undecidability) of the problem to decide if an arbitrary primitive recursive function g
has the property IsZero, Z = { f | "x f(x) = 0 }.

 4. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the
following decision problems. No proofs are required.

Problem / Language Class Regular Context Free

L = S* ?

L = f ?

x Î L2, for arbitrary x ?

 5. Choosing from among (Y) yes, (N) No, (?) unknown, categorize each of the following closure
properties. No proofs are required.

Problem / Language Class Regular Context Free

Closed under intersection?

Closed under quotient?

Closed under quotient with Regular languages?

Closed under complement?

COT 4210 – 3 – Fall 2016: Sample Final Questions – Hughes
 6. Prove that any class of languages, C, closed under union, concatenation, intersection with regular

languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under
MissingMiddle, where, assuming L is over the alphabet S,
MissingMiddle(L) = { xz | $y Î S* such that xyz Î L }
You must be very explicit, describing what is produced by each transformation you apply.

 7. Use PCP to show the undecidability of the problem to determine if the intersection of two context
free languages is non-empty. That is, show how to create two grammars GA and GB based on some
instance P = <<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA) Ç L(GB) ¹ f iff P has a
solution. Assume that P is over the alphabet S.You should discuss what languages your grammars
produce and why this is relevant, but no formal proof is required.

 8. Consider the set of indices CONSTANT = { f | $K "y [jf(y) = K] }. Use Rice’s Theorem to show
that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated.

 9. Show that CONSTANT ºm TOT, where TOT = { f | "y jf(y)¯ }.

 10. Why does Rice’s Theorem have nothing to say about each of the following? Explain by showing

some condition of Rice’s Theorem that is not met by the stated property.
 a.) AT-LEAST-LINEAR = { f | "y jf(y) converges in no fewer than y steps }.
 b.) HAS-IMPOSTER = { f | $ g [g≠f and "y [jg(y) = jf(y)]] }.

 11. We described the proof that 3SAT is polynomial reducible to Subset-Sum.
a.) Describe Subset-Sum
b.) Show that Subset-Sum is in NP
c.) Assuming a 3SAT expression (a + ~b + c) (b + b + ~c), fill in the upper right part of the
reduction from 3SAT to Subset-Sum.

 a b c a + ~b + c b + b + ~c
a 1

~a 1
b 1

~b 1
c 1

~c 1
C1 1
C1’ 1
C2 1
C2’ 1

 1 1 1 3 3

12. Describe the gadgets used to reduce 3SAT to the Vertex Covering Problem

13. Show a first-fit schedule for the following task times on two processors
{T1/1, T2/7, T3/2, T4/4, T5/4, T6/2, T7/5, T8/2, T9/3, T10/4}

14. Use the Pumping Lemma for CFLs to show:
{ ww | w is over {a,b} } is not Context Free

15. Write a context-free grammar for the complement of the language { ww | w is in {a,b}* }

