Assignment # 8.1 Key

1. Use reduction from Halt to show that one cannot decide REPEATS, where REPEATS = { f | for some x and y, x \neq y, $\varphi_f(x) \downarrow$, $\varphi_f(y) \downarrow$ and $\varphi_f(x) == \varphi_f(y)$ }

Let f,x be an arbitrary pair of natural numbers. < f,x> is in Halt iff $\phi_f(x) \downarrow$

Define g by $\varphi_g(y) = \varphi_f(x) - \varphi_f(x)$, for all y.

Clearly, $\phi_g(y) = 0$, for all y, iff $\phi_f(x) \downarrow$, and $\phi_g(y) \uparrow$, for all y, otherwise.

Summarizing, <f,x> is in Halt implies g is in REPEATS and <f,x> is not in Halt implies g is not in REPEATS

Halt \leq_{m} **REPEATS** as we were to show.

Note: I have not overloaded the index of a function with the function in my proof, but I do not mind if you do such overloading.

Assignment # 8.2 Key

2. Show that REPEATS reduces to Halt. (1 plus 2 show they are equally hard)

Let f be an arbitrary natural number. f is in REPEATS iff for some x and y, $x \neq y$, $\phi_f(x) \downarrow$, $\phi_f(y) \downarrow$ and $\phi_f(x) = \phi_f(y)$

Define g by $\varphi_g(z) = \exists \langle x,y,t \rangle$ [STP(f,x,t) & STP(f,y,t) & (x\neq y) & (VALUE(f,x,t) = (VALUE(f,y,t))], for all z.

Clearly, $\phi_g(z) = 1$, for all z, iff there is some pair, x,y, such that $\phi_f(x) \downarrow$ and $\phi_f(y) \downarrow$ and $\phi_f(x) = \phi_f(y)$, and $\phi_g(z) \uparrow$, for all z, otherwise.

Summarizing, f is in REPEATS iff g is in Halt and so

REPEATS \leq_{m} Halt as we were to show.

Assignment # 8.3 Key

3. Use Reduction from Total to show that DOUBLES is not even re, where

DOUBLES = { f | for all x, $\varphi_f(x) \downarrow$, $\varphi_f(x+1) \downarrow$ and $\varphi_f(x+1)=2*\varphi_f(x)$ }

Let f be an arbitrary natural number. f is in Total iff \forall x $\phi_f(x)$ \downarrow

Define g by $\varphi_g(x) = \varphi_f(x) - \varphi_f(x)$, for all x.

Clearly, $\phi_g(x) = 0$, and so $\phi_g(x+1) = 2*\phi_g(x) = 0$ for all x, iff $\forall x \phi_f(x) \downarrow$; otherwise $\phi_g(x) \uparrow$ for some x.

Summarizing, f is in Total iff g is in DOUBLES and so

TOTAL \leq_m **DOUBLES** as we were to show.

Assignment # 8.3 Alternate Key

3. Use Reduction from Total to show that DOUBLES is not even re, where

DOUBLES = { f | for all x, $\varphi_f(x) \downarrow$, $\varphi_f(x+1) \downarrow$ and $\varphi_f(x+1)=2*\varphi_f(x)$ }

Let f be an arbitrary natural number. f is in Total iff \forall x $\phi_f(x)$ \downarrow

Define g by $\varphi_g(x) = \varphi_f(x) - \varphi_f(x) + 2^x$ for all x.

Clearly, $\phi_g(x) = 2^x$, and so $\phi_g(x+1) = 2^*\phi_g(x) = 2^(x+1)$ for all x, iff $\forall x \phi_f(x) \downarrow$; otherwise $\phi_g(x) \uparrow$ for some x.

Summarizing, f is in Total iff g is in DOUBLES and so

TOTAL \leq_m **DOUBLES** as we were to show.

Assignment # 8.4 Key

4. Show DOUBLES reduces to Total. (4 plus 5 show they are equally hard)

Let f be an arbitrary natural number. f is in DOUBLES iff $\forall x \varphi_f(x) \downarrow$, $\varphi_f(x+1) \downarrow$ and $\varphi_f(x+1)=2*\varphi_f(x)$.

Define g by $\varphi_g(x) = \mu y[\varphi_f(x+1) = 2*\varphi_f(x)]$, for all x.

Clearly, $\phi_g(x) \downarrow$, for all x, iff $\forall x \phi_f(x) \downarrow$, $\phi_f(x+1) \downarrow$ and $\phi_f(x+1)=2^*\phi_f(x)$; otherwise $\phi_g(x) \uparrow$ for some x.

Summarizing, f is in DOUBLES iff g is in Total and so

DOUBLES \leq_m **TOTAL** as we were to show.

Assignment # 8.5 Key

5. Use Rice's Theorem to show that REPEATS is undecidable First, REPEATS is non-trivial as CO(x) = 0 is in REPEATS and S(x) = x+1 is not.

Second, REPEATS is an I/O property.

To see this, let f and g are two arbitrary indices such that $\forall x [\phi_f(x) = \phi_g(x)]$

 $f \in REPEATS \ iff \exists y,z,y \neq z, such that <math>\phi_f(y) \downarrow , \phi_f(z) \downarrow and \phi_f(y) = \phi_f(z)$ iff, since $\forall x [\phi_f(x) = \forall x \phi_g(x)], \exists y,z,y \neq z,$ (same y,z as above) such that $\phi_g(y) \downarrow , \phi_g(z) \downarrow and \phi_g(y) = \phi_g(z)$ iff $g \in REPEATS$.

Thus, $f \in REPEATS$ iff $g \in REPEATS$.

Assignment # 8.6 Key

6. Use Rice's Theorem to show that DOUBLES is undecidable First, DOUBLES is non-trivial as CO(x) = 0 (2*0 = 0) is in DOUBLES and S(x) = x+1 is not.

Second, DOUBLES is an I/O property.

To see this, let f and g are two arbitrary indices such that $\forall x [\phi_f(x) = \phi_g(x)].$

 $f \in DOUBLES$ iff for all x, $\phi_f(x) \downarrow$, $\phi_f(x+1) \downarrow$ and $\phi_f(x+1)=2*\phi_f(x)$ iff, since $\forall x \ [\phi_f(x) = \phi_g(x)]$, for all x, $\phi_g(x) \downarrow$, $\phi_g(x+1) \downarrow$ and $\phi_g(x+1)=2*\phi_g(x)$ iff $g \in DOUBLES$.

Thus, $f \in DOUBLES$ iff $g \in DOUBLES$.