Assignment # 7.1a Key

1. a.) Use the Pumping Lemma for CFLs to prove that the following is \underline{NOT} a CFL $L = \{a^i b^j \mid j > 2*I\}$

This language is a CFL, so you cannot show it to be a non-CFL. A grammar that works is

 $S \rightarrow aSbb \mid Sb \mid b$

Assignment # 7.1b Key

1. b.) Use the Pumping Lemma for CFLs to prove that the following is <u>NOT</u> a CFL.

 $L = \{ a^n b^{Fib(n)} \mid n>0 \}$, where Fib(i) is the ith Fibonacci number

PL: Provides N>0

We: Choose $a^Nb^{N!} \in L$

PL: Splits $a^N b^{N!}$ into uvwxy, $|vwx| \le N$, |vx| > 0, such that $\forall i \ge 0$ uvⁱwxⁱy $\in L$

We: Choose i=2

Case 1: vwx contains only b's, then we are increasing the number of b's while leaving the number of a's unchanged. In this case uv^2wx^2y is of form $a^Nb^{N!+c}$, c>0 and this is not in L.

Case 2: vwx contains some a's and maybe some b's. Under this circumstances uv^2wx^2y has at least N+1 a's and at most N!+N-1 b's. But (N+1)! = N!(N+1) = N!*N+N \geq N!+N-1 and so is not in L.

Cases 1 and 2 cover all possible situations, so L is not a CFL

Assignment # 7.2

2. Present the **CKY** recognition matrix for the string **babba** assuming the Chomsky Normal Form grammar,

G = ({S,A,B,C,D}, {a,b}, R, S), specified by the rules R:

$$S \rightarrow AB \mid BA \mid SC$$

$$A \rightarrow CS \mid CD \mid a$$

$$B \rightarrow DS \mid b$$

$$C \rightarrow a$$

$$D \rightarrow b$$

	b	а	b	b	а
1	B,D	A,C	B,D	B,D	A,C
2	S	S,A		S	
3	S,B	S	В		
4	В	S			
5	B,S				

Assignment # 7.3a

3. Consider the context-free grammar $G = (\{S\}, \{a, b\}, S, P)$, where P is: $S \rightarrow SaSbS \mid SbSaS \mid SaSaS \mid a \mid \lambda$ Provide the first part of the proof that $L(G) = L = \{w \mid w \text{ has at least as many a's as b's} \}$ That is, show that $L(G) \subseteq L$ To attack this problem we can first introduce the notation that, for a syntactic form α , $\alpha_a = \text{the number of a's in } \alpha$, and $\alpha_b = \text{the number of b's in } \alpha$. Using this, we show that if $S \Rightarrow \alpha$, then $\alpha_b \leq \alpha_a$ and hence that $L(G) \subseteq L$: A straightforward approach is to show, inductively on the number of steps, i, in a derivation, that, if $S \Rightarrow i \alpha$, then $\alpha_b \leq \alpha_a$.

Assignment # 7.3b

Basis (i=1): Since $S \Rightarrow \alpha$ iff $S \Rightarrow \alpha$ and all rhs of S have $\alpha_b \leq \alpha_a$ then the base case holds

IH: Assume if $S \Rightarrow_{m} \alpha$, then $\alpha_{b} \leq \alpha_{a}$, whenever $m \leq n$

IS: Show that if S $\Rightarrow_{n+1} \alpha$, then $\alpha_b \le \alpha_a$

If S α then S $\Rightarrow_n \beta$ and $\beta \Rightarrow \alpha$

Since G has only one non-terminal S, the rewriting of β to α involves a single application of one of the S-rules. By the I.H., β has the property that $\beta_b \leq \beta_a$. Since a single application of an S rule either adds no b's or a's, one a, one a and one b, or two b's, we have the three following cases:

Assignment # 7.3c

Case 0:
$$\alpha_a = \beta_a$$
, and $\alpha_b = \beta_b$

In which case, using the IH, we have:

$$\beta_b \le \beta_a \to \alpha_b \le \alpha_a$$

Case 1:
$$\alpha_b = \beta_b$$
, and $\alpha_a = \beta_a + 1$

In which case, using the IH, we have:

$$\beta_b \le \beta_a \longrightarrow \alpha_b \le \alpha_a$$

Case 2:
$$\alpha_b = \beta_b + 1$$
, and $\alpha_a = \beta_a + 1$

In which case, using the IH, we have:

$$\beta_b \le \beta_a \to \alpha_b \le \alpha_a$$

Case 3:
$$\alpha_b = \beta_b$$
, and $\alpha_a = \beta_a + 2$

In which case, using the IH, we have:

$$\beta_b \le \beta_a \to \alpha_b \le \alpha_a$$