Assignment # 2.1 Key

Prove or disprove, if p and q are distinct prime numbers (p≠q), then $\sqrt{(pq)}$ is irrational.

Proof:

Assume \sqrt{pq} is a rational number. Let a/b be the reduced fraction (no common prime factors) that equals $\sqrt{(pq)}$.

 $\sqrt{(pq)} = a/b$: assumption (note $a \neq b$, as then pq=1) $pq = a^2/b^2$: square both sides $pqb^2 = a^2$: multiply both sides by b^2 $pqb^2 = (kpq)^2$: for some k, as p and q must be primefactors of a since a and b have no
common prime factors $b^2 = k^2 pq$: divide both sides by pq

But then p and q must be prime factors of both a and b. But then a/b is not reduced as both have common prime factors p and q. This contradicts our original assumption that $\sqrt{(pq)}$ is rational, so it is irrational.

Assignment # 2.2 Key

Prove, if L is a language over Σ then lim $(n \rightarrow \infty)$ Lⁿ = Σ^* iff $(\Sigma \cup \{\lambda\}) \subseteq L$. Note: L^k= { $x_1 x_2 \dots x_k | x_1, x_2, \dots, x_k \in L$ }

Proof:

Assume $(\Sigma \cup \{\lambda\}) \subseteq L$. As $\lambda \in L$, $L^k \subseteq L^{k+1}$, for all k≥0, since $L^k \cdot \lambda = L^k$. By definition $\Sigma^* = \{\lambda\} \cup \Sigma \cup \Sigma^2 \cup \dots \cup \Sigma^{j} \cup \dots = \bigcup_{k=0}^{\infty} \Sigma^k$ Since $(\Sigma \cup \{\lambda\}) \subseteq L$ we have that, for each k≥0, $L^k \subseteq L^{k+1} \subseteq \lim(n \to \infty) L^n$. Thus, for each k≥0, $\Sigma^k \subseteq L^k \subseteq \lim(n \to \infty) L^n$ and so $\Sigma^* = \bigcup_{k=0}^{\infty} \Sigma^k \subseteq \lim(n \to \infty) L^n$. Given that L is a language over Σ then $L \subseteq \Sigma^*$, by definition, and therefore $L^n \subseteq \Sigma^*$ for all $n \ge 0$ and so $\lim(n \to \infty) L^n \subseteq \lim(n \to \infty) \Sigma^* \subseteq \Sigma^*$. Putting this together, we have $\lim(n \to \infty) L^n \subseteq \Sigma^*$. Thus, $(\Sigma \cup \{\lambda\}) \subseteq L$ implies $\lim(n \to \infty) L^n = \Sigma^*$. Assume $\lim(n \to \infty) L^n = \Sigma^*$. Clearly L^{k+1} cannot contain strings shorter than those found in L^k as $L^{k+1} = L^k L$. Thus if any of $(\Sigma \cup \{\lambda\})$ is missing from L, then that element is also missing from all L^k , k > 1 and so $\lim(n \to \infty) L^n \neq \Sigma^*$, which is a contradiction. Thus, $\lim(n \to \infty) L^n = \Sigma^*$ implies $(\Sigma \cup \{\lambda\}) \subseteq L$.

Second Solution for 2.2

- Proof by Induction :
- Assume $(\Sigma \cup \{\lambda\}) \subseteq L$. We want to prove that, $\forall i \ge 0$, $\Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \ldots \cup \Sigma^i \subseteq L^i$:
- Base: I = 0: as $\Sigma^0 = \{\lambda\} \subseteq L^0$ by definition of 0-th power (even $\{\}^0$ contains λ)
- Induction Hypothesis: Assume for some i ≥ 0 , $\Sigma^0 \cup \Sigma \cup \Sigma^2 \cup \ldots \cup \Sigma^i \subseteq L^i$
- Induction Step: Show for i+1
 - $\quad \Sigma^i \subseteq L^i \text{ by IH}$
 - $\Sigma \subseteq L$ assumed $\Box \longrightarrow \Sigma^{i+1} \subseteq L^{i+1}$
 - Because λ ∈ L, ∀k≥0, L^k ⊆ L^{k+1}
 - Hence, $\Sigma^0 \cup \Sigma \cup \Sigma^2 \cup \ldots \cup \Sigma^i \cup \Sigma^{i+1} \subseteq L^i \cup \Sigma^{i+1} \subseteq L^{i+1}$

As i goes to infinity The left side becomes Σ^* and right side becomes $\lim(n \to \infty) L^n$. Therefore $\Sigma^* \subseteq \lim(n \to \infty) L^n$.

 $\lim(n \to \infty) L^n \subseteq \Sigma^*$ is trivial. Now we can conclude that $\Sigma^* = \lim(n \to \infty) L^n$.