Assignment # 1.1 Key

1. Prove or disprove the following: For non-empty sets A and B, $(AUB)=(A\cap B)$ if and only if A=B

Part 1) Prove if A = B, then (AUB)=(A \cap B)

Assume A=B then showing $(AUB)=(A\cap B)$ is equivalent to showing $(AUA)=(A\cap A)$. Now, any set unioned or intersected with itself is that set. Thus, (AUA) = A and $(A \cap A) = A$ and so $(AUA) = (A \cap A)$, proving that A = Bimplies $(AUB)=(A\cap B)$. Note: This is true even if both are empty.

Part 2) Prove if $(AUB)=(A\cap B)$, then A = B

Assume otherwise, then there is some case where $(AUB)=(A\cap B)$, but $A\neq B$. This means one set must have an element that is missing from the other. As A's and B's roles are symmetric and each is non-empty, we can choose to say that there is some x in A that is not in B. As x is in A, it is in (AUB), but since it is not in B then it is not in $(A \cap B)$, and hence $(A \cup B) \neq (A \cap B)$, but that contradicts our original assumption. Thus, $(AUB)=(A\cap B)$ implies A = B. Together Parts 1 and 2 show that, for non-empty A and B, $(AUB)=(A\cap B)$ if and only if A=B. Note: even here, the non-empty condition is superfluous as A≠B implies one has an element and we can just choose that one without worrying if the other is empty or not.