Assignment # 10.1 Key

1. Recast the decision problem for the Boolean expression (a + b) (a + ~b + c) (~b) as a SubsetSum problem using the construction discussed in class.

	а	b	c	a+b+b	$a + ^{\sim} b + c$	~b + ~b + ~b
a	1	0	0	1	1	0
~ a	1	0	0	0	0	0
b	0	1	0	2	0	0
~b	0	1	0	0	1	3
C	0	0	1	<i>o</i>	1	0
~ <i>c</i>	0	0	1	0	0	0
C1	0	0	0	1	0	0
C1 '	0	0	0	1	0	0
C2	0	0	0	0	1	0
C2'	0	0	0	0	1	0
<i>C3</i>	0	0	0	0	0	1
<i>C3</i> '	0	0	0	0	0	1
	1	1	1	<i>3</i>	3	3

Assignment # 10.2 Key

2. Recast the SubsetSum problem (8, 7, 6, 4, 6, 8, 2, 7, 2), G=19 as a Partition Problem using the construction discussed in class.

(8, 7, 6, 4, 6, 8, 2, 7, 2, 81, 69)Can partition as (8,7,4, 81) = 100; (6,6,8,2,7,2,69) = 100

Assignment # 10.3 Key

3. Recast the decision problem for the Boolean expression (a + b) (a + ~b + c) (~b) as an Integer Linear Programming problem using the construction discussed in class.

```
0 \le a \le 1; 0 \le b \le 1; 0 \le c \le 1;

a + b \ge 1

a + (1-b) + c \ge 1

(1-b) \ge 1

Solution: a = 1; b = 0; c = 1 (or 0)
```