Consider the pushdown automaton $\mathcal{A}=(\{\mathbf{q}, \mathbf{f}\},\{\mathbf{0}, \mathbf{1}, \mathbf{c}\},\{\mathbf{0}, \mathbf{1}, \mathbf{c}, \mathbb{\$}\}, \boldsymbol{\delta}, \mathbf{q}, \mathbb{\$},\{\mathbf{f}\})$, where $\boldsymbol{\delta}$ defines transitions:

$$
\begin{aligned}
& \delta(\mathbf{q}, \mathbf{0}, \$)=\{(\mathbf{q}, \operatorname{PUSH}(1))\} \\
& \delta(\mathbf{q}, \mathbf{1}, \$)=\{(\mathbf{q}, \operatorname{PUSH}(0))\} \\
& \delta(\mathbf{q}, \mathbf{0}, \mathbf{0})=\{(\mathbf{q}, \operatorname{PUSH}(1))\} \\
& \delta(\mathbf{q}, \mathbf{0}, \mathbf{1})=\{(\mathbf{q}, \operatorname{PUSH}(\mathbf{1}))\} \\
& \delta(\mathbf{q}, \mathbf{1}, \mathbf{0})=\{(\mathbf{q}, \operatorname{PUSH}(\mathbf{0}))\} \\
& \delta(\mathbf{q}, \mathbf{1}, \mathbf{1})=\{(\mathbf{q}, \operatorname{PUSH}(0))\} \\
& \delta(\mathbf{q}, \mathbf{c}, \mathbf{0})=\{(\mathbf{p}, \operatorname{PUSH}(\mathbf{c}))\} \\
& \delta(q, c, 1)=\{(p, \operatorname{PUSH}(c))\} \\
& \delta(\mathbf{p}, \lambda, \mathbf{c})=\{(\mathbf{p}, \mathrm{POP})\} \\
& \delta(\mathbf{p}, \mathbf{0}, \mathbf{0})=\{(\mathbf{p}, \mathrm{POP})\} \\
& \delta(\mathbf{p}, \mathbf{1}, \mathbf{1})=\{(\mathbf{p}, \mathrm{POP})\} \\
& \delta(p, \lambda, \$)=\{(\mathbf{f}, \mathbf{P O P})\}
\end{aligned}
$$

This generates the language $\mathcal{E}(\mathcal{A})=\left\{\mathbf{w} \mathbf{c h}(\mathbf{w})^{\mathbf{R}} \mid \mathbf{w} \in\{\mathbf{0}, \mathbf{1}\}^{+}\right\}$and $\mathbf{h}(\mathbf{0})=\mathbf{1} ; \mathbf{h}(\mathbf{1})=\mathbf{0}$
Write the equivalent grammar using our class's variant of the construction in Hopcroft, Motwani and Ullman.
Hint: the starting non-terminal is: $\langle\mathbf{q}, \$, \mathbf{f}>$, meaning generate all string that are consumed when we start in \mathbf{q}, and end up in \mathbf{f}, having uncovered what's below $\mathbf{\$}$.

$$
\begin{aligned}
& <\mathbf{q}, \mathbf{\$,} \mathbf{f}>\rightarrow \mathbf{0}<\mathbf{q}, \mathbf{1}, \mathbf{q}><\mathbf{q}, \mathbf{\$}, \mathbf{f}>\quad \mathrm{X} \\
& \mid \mathbf{0}<\mathbf{q}, \mathbf{1}, \mathrm{p}><\mathrm{p}, \mathbf{\$}, \mathrm{f}> \\
& \mathrm{0}<\mathbf{q}, \mathbf{1}, \mathrm{f}><\mathrm{f}, \mathbf{\$}, \mathrm{f}>\quad \mathrm{X} \\
& \mid \mathbf{1}<\mathbf{q}, \mathbf{0}, \mathbf{q}><\mathbf{q}, \mathbf{S}, \mathrm{f}>\quad \mathrm{X} \\
& \mid \mathbf{1}<\mathbf{q}, \mathbf{0}, \mathrm{p}><\mathbf{p}, \mathbf{\$}, \mathrm{f}> \\
& \mid \mathbf{1}<\mathbf{q}, \mathbf{0}, \mathrm{f}><\mathbf{f}, \mathbf{S}, \mathrm{f}>\quad \mathrm{X} \\
& <\mathbf{q}, \mathbf{0}, \mathrm{p}>\rightarrow \mathbf{0}<\mathbf{q}, \mathbf{1}, \mathrm{p}><\mathrm{p}, \mathbf{0}, \mathrm{p}> \\
& \mid \mathbf{1}<\mathbf{q}, \mathbf{0}, \mathrm{p}><\mathbf{p}, \mathbf{0}, \mathrm{p}> \\
& \mid \mathbf{c}<\mathbf{p}, \mathbf{0}, \mathrm{p}> \\
& <\mathrm{q}, \mathbf{1}, \mathrm{p}>\rightarrow \mathbf{0}<\mathbf{q}, \mathbf{1}, \mathrm{p}><\mathrm{p}, \mathbf{1}, \mathrm{p}> \\
& \mid \mathbf{1}<\mathbf{q}, \mathbf{0}, \mathrm{p}><\mathrm{p}, \mathbf{1 , p}> \\
& \mid \mathrm{c}<\mathrm{p}, \mathbf{1}, \mathrm{p}> \\
& <\mathrm{p}, \mathbf{0}, \mathrm{p}>\rightarrow \mathbf{0} \\
& <\mathrm{p}, 1, \mathrm{p}>\rightarrow 1 \\
& <\mathrm{p}, \mathbf{\$, f}>\rightarrow \lambda
\end{aligned}
$$

$<\mathbf{q}, \mathbf{0}, \mathbf{q}>,<\mathbf{q}, \mathbf{1}, \mathbf{q}>,<\mathbf{f}, \mathbf{\$}, \mathbf{f}>$ can lead nowhere as states q and f never entered after popping the stack.

Rewrite as

$$
\begin{array}{lll}
\mathrm{S} & \rightarrow \mathbf{0} \text { T| } \mathbf{1} \mathrm{U} & \\
\mathrm{~T} & \rightarrow 0 \mathrm{~T} 1|\mathrm{IU} 1| \mathrm{c} 1 & \text { // owe you a } 1 \\
\mathrm{U} & \rightarrow \mathbf{0} \text { T } 0|1 \mathrm{U} 0| \mathrm{c} 0 & \text { // owe you a } 0
\end{array}
$$

Consider the pushdown automaton $\mathcal{A}=(\{\mathbf{q}, \mathbf{f}\},\{\mathbf{0}, \mathbf{1}, \mathbf{c}\},\{\mathbf{0}, \mathbf{1}, \mathbf{c}\}, \boldsymbol{\delta}, \mathbf{q},\{\mathbf{f}\})$, where $\boldsymbol{\delta}$ defines transitions:

$$
\begin{aligned}
\delta(\mathbf{q}, \mathbf{0}, \lambda) & =\{(\mathbf{q}, \text { PUSH(1) })\} \\
\delta(\mathbf{q}, \mathbf{1}, \lambda) & =\{(\mathbf{q}, \text { PUSH(0) })\} \\
\delta(\mathbf{q}, \mathbf{c}, \lambda) & =\{(\mathbf{p}, \text { PUSH } \mathbf{c}))\} \\
\delta(\mathbf{p}, \lambda, \mathbf{c}) & =\{(\mathbf{p}, \text { POPP) }\} \\
\delta(\mathbf{p}, \mathbf{0}, \mathbf{0}) & =\{(\mathbf{p}, \text { POP }),(\mathbf{f}, \text { POP })\} \\
\delta(\mathbf{p}, \mathbf{1}, \mathbf{1}) & =\{(\mathbf{p}, \text { POP }),(\mathbf{f}, \text { POP })\}
\end{aligned}
$$

This generates the language $\mathcal{E}(\mathcal{A})=\left\{\mathbf{w} \mathbf{c h}(\mathbf{w})^{\mathbf{R}} \mid \mathbf{w} \in\{\mathbf{0}, \mathbf{1}\}^{+}\right\}$and $\mathbf{h}(\mathbf{0})=\mathbf{1} ; \mathbf{h}(\mathbf{1})=\mathbf{0}$
Write the equivalent grammar using book's construction.
Hint: the starting non-terminal is: Aq,f, meaning generate all string that are consumed when we start in \mathbf{q}, and end up in \mathbf{f}. Note that the stack is empty at start and we allow top of stack to be ignored in transitions.

```
\(A q, f \rightarrow \mathbf{A q}, \mathbf{q}\) Aq,f
    | Aq,p Ap,f
    | Aq,f Af,f
    | 0 Aq,p 1
    | 1 Aq,p 0
\(\mathbf{A q}, \mathbf{p} \rightarrow \mathbf{A q}, \mathbf{q} \mathbf{A q}, \mathbf{p}\)
    | Aq,p Ap,p
    | 0 Aq,p 1
    | 1 Aq,p 0
    | \(\mathbf{c} \mathbf{A p}, \mathbf{p} \lambda\)
Ap,p \(\rightarrow \lambda\)
Af,f \(\rightarrow \lambda\)
```

Useless as becomes Aq, $f \rightarrow$ Aq, \mathbf{f} since can never pop and end in q Useless as can never push starting in p Useless as becomes Aq, $f \rightarrow$ Aq, \mathbf{f} (see below)

Useless as becomes $\mathbf{A q}, \mathbf{p} \rightarrow \mathbf{A q}, \mathbf{p}$ since can never pop and end in q Useless as becomes Aq, $\boldsymbol{p} \rightarrow \mathbf{A q}, \mathbf{p}$ (see below)

This reduces to Aq,p $\rightarrow \mathbf{c}$
No other options as never pushes onto stack
No other options since never pushes onto stack

Rewrite as

```
S ->0T1| 1T0
T }->0\mathrm{ T1| 1T0|c
```

