
Discrete II

Theory of Computation

Charles E. Hughes

COT 4210 – Fall 2014

Notes

11/18/2014 COT 4210 © UCF 2

Who, What, Where and When

• Instructor: Charles Hughes;
Harris Engineering 247C; 823-2762
(phone is not a good way to get me);
charles.e.hughes@knights.ucf.edu
(e-mail is a good way to get me)
Please use Subject: COT4210

• Web Page: http://www.cs.ucf.edu/courses/cot4210/Fall2014

• Meetings: TR 1:30PM – 2:45PM, MSB-359;
28 class periods, each 75 minutes long.

 Office Hours: TR 3:15PM – 4:30PM in HEC-247C

• GTA: Melanie Kaprocki
<mskaprocki@knights.ucf.edu>

• Please use Subject: COT4210
Office Hours: TBD

2

mailto:charles.e.hughes@knights.ucf.edu?subject=COT4210
http://www.cs.ucf.edu/courses/cot4210/Fall2014
http://www.cs.ucf.edu/courses/cot4210/Fall2014

11/18/2014 COT 4210 © UCF 3

Text Material

• This and other material linked from web site.

• Text:

– Sipser, Introduction to the Theory of Computation

3rd Ed., Course Technologies, 2013.

• References:

– Hopcroft, Motwani and Ullman, Introduction to

Automata Theory, Languages and Computation

3rd Ed., Addison-Wesley, 2006.

3

11/18/2014 COT 4210 © UCF 4

Expectations

• Prerequisites: COT3100 (discrete structure I);
COP3503 (undergraduate algorithm design
and analysis)

• Assignments: 8 to 10.

• Exams: Two (2) midterms and a final.

• Material: I will draw heavily from the text by
Sipser. Some material will also come from
Hopcroft. Class notes and in-class
discussions are, however, comprehensive
and cover models, closure properties and
undecidable problems that may not be
addressed in either of these texts.

4

11/18/2014 COT 4210 © UCF 5

Goals of Course

• Introduce Theory of Computation, including

– Various models of computation

• Finite State Automata and their relation to regular expressions and regular grammars

• Push Down Automata and their relation to context-free languages

• Techniques for showing languages are NOT in particular language classes

• Closure and non-closure problems

– Limits of computation

• Turing Machines and other equivalent models

• Undecidable problems

• The technique of reducibility

• The ubiquity of undecidability

– Complexity theory

• Order notation (this should be a review)

• Time complexity, the sets P and NP, and the question does P=NP?

5

11/18/2014 COT 4210 © UCF 6

Expected Outcomes

• You will gain a solid understanding of various types of
automata and other computational models and their
relation to formal languages.

• You will have a strong sense of the limits that are
imposed by the very nature of computation, and the
ubiquity of unsolvable problems throughout CS.

• You will understand the notion of computational
complexity and especially of the classes of problems
known as P, NP and NP-complete.

• You will come away with stronger formal proof skills and
a better appreciation of the importance of discrete
mathematics to all aspects of CS.

6

11/18/2014 COT 4210 © UCF 7

Keeping Up

• I expect you to visit the course web site regularly
(preferably daily) to see if changes have been made or
material has been added.

• Attendance is preferred, although I do not take roll.

• I do, however, ask lots of questions in class and give lots
of hints about the kinds of questions I will ask on exams.
It would be a shame to miss the hints, or to fail to
impress me with your insightful in-class answers.

• You are responsible for all material covered in class,
whether in the text or not.

7

11/18/2014 COT 4210 © UCF 8

Rules to Abide By

• Do Your Own Work
– When you turn in an assignment, you are implicitly telling me

that these are the fruits of your labor. Do not copy anyone else's
homework or let anyone else copy yours. In contrast, working
together to understand lecture material and solutions to
problems not posed as assignments is encouraged.

• Late Assignments
– I will accept no late assignments, except under very unusual

conditions, and those exceptions must be arranged with me or
the GTA in advance unless associated with some tragic event.

• Exams
– No communication during exams, except with me or a

designated proctor, will be tolerated. A single offense will lead to
termination of your participation in the class, and the assignment
of a failing grade.

8

11/18/2014 COT 4210 © UCF 9

Grading

• Grading of Assignments

– My GTA and I will generally grade harder than our actual

expectations run. Consequently, on most (not all) assignments, a

grade of 90% or above will translate into a perfect grade. In

general, I will award everyone ~111% of the grade they are

assigned on the returned papers that are graded in this manner.

• Exam Weights

– The weights of exams will be adjusted to your personal benefits,

as I weigh exams you do well in more than those in which you do

less well.

9

11/18/2014 COT 4210 © UCF 10

Important Dates

• Exam#1 – Thursday, September 25

• Withdraw Deadline – Mon., Oct. 27

• Exam#2 – Thursday, October 30

• Final – Thurs., Dec. 9, 1:00AM–2:50PM

• Days off: 11/11 (Veterans Day)

11/27 (Thanksgiving)

• Exam #1/#2 dates are subject to change with

appropriate notice. Final exam is, of course,

fixed in stone.

10

11/18/2014 COT 4210 © UCF 11

Evaluation (tentative)

• Mid Terms – 100 points each

• Final Exam – 150 points

• Assignments – 100 points

• Bonus – best exam weighed +50 points

• Total Available: 500

• Grading will be A ≥ 90%, A- ≥ 88%,
B+ ≥ 85%, B ≥ 80%, B- ≥ 78%,
C+ ≥ 75%, C ≥ 70%, C- ≥ 60%,
D ≥ 50%, F < 50%

11

Financial Aid Related Activity

Send an e-mail to me.
The subject must be COT4210.
Send it to charles.e.hughes@knights.ucf.edu
I will use that for all class communication.
Cc: Melanie Kaprocki <mskaprocki@knights.ucf.edu>

In the message, tell me where and when you took
Discrete Structures I or its equivalent. Also, tell me
what days/times you are NOT free to make office hours.

Do this by late Friday, 8/22.

11/18/2014 COT 4210 © UCF 12

mailto:charles.e.hughes@knights.ucf.edu?subject=COT4210

Type-0

Type-1

Type-2

Type-3

Recursively Enumerable

(NDTM)

Recursive Languages

(TMs that always halt)

Context-sensitive Languages

(LBAs)

Context-free Languages

(NPDAs)

Deterministic Context-free Languages

(DPDAs)(LR(1))

Regular Languages

(DFAs = NFAs)

11/18/2014 COT 4210 © UCF 13

Forward Pass on Formal

Languages and Automata
= DTM

History

The Quest for Mechanizing

Mathematics

11/18/2014 COT 4210 © UCF 15

Hilbert, Russell and Whitehead

• Late 1800’s to early 1900’s

• Axiomatic schemes

– Axioms plus sound rules of inference

– Much of focus on number theory

• First Order Predicate Calculus

– xy [y > x]

• Second Order (Peano’s Axiom)

– P [[P(0) && x[P(x) P(x+1)]]  xP(x)]

15

11/18/2014 COT 4210 © UCF 16

Hilbert

• In 1900 declared there were 23 really
important problems in mathematics.

• Belief was that the solutions to these
would help address math’s complexity.

• Hilbert’s Tenth asks for an algorithm to
find the integral zeros of polynomial
equations with integral coefficients. This is
now known to be impossible (In 1972,
Matiyacevič showed this undecidable).

16

11/18/2014 COT 4210 © UCF 17

Hilbert’s Belief

• All mathematics could be developed within

a formal system that allowed the

mechanical creation and checking of

proofs.

17

11/18/2014 COT 4210 © UCF 18

Gödel

• In 1931 he showed that any first order theory
that embeds elementary arithmetic is either
incomplete or inconsistent.

• He did this by showing that such a first order
theory cannot reason about itself. That is, there
is a first order expressible proposition that
cannot be either proved or disproved, or the
theory is inconsistent (some proposition and its
complement are both provable).

• Gödel also developed the general notion of
recursive functions but made no claims about
their strength.

18

11/18/2014 COT 4210 © UCF 19

Turing (Post, Church, Kleene)

• In 1936, each presented a formalism for computability.
– Turing and Post devised abstract machines and claimed

these represented all mechanically computable functions.

– Church developed the notion of lambda-computability from
recursive functions (as previously defined by Gödel and
Kleene) and claimed completeness for this model.

• Kleene demonstrated the computational equivalence of
recursively defined functions to Post-Turing machines.

• Church’s notation was the lambda calculus, which later
gave birth to Lisp.

19

11/18/2014 COT 4210 © UCF 20

More on Emil Post

• In the 1920’s, starting with notation developed by Frege
and others in 1880s, Post devised the truth table form
we all use now for Boolean expressions (propositional
logic). This was a part of his PhD thesis in which he
showed the axiomatic completeness of the propositional
calculus.

• In the late 1930’s and the 1940’s, Post devised symbol
manipulation systems in the form of rewriting rules
(precursors to Chomsky’s grammars). He showed their
equivalence to Turing machines.

• In 1940s, Post showed the complexity (undecidability) of
determining what is derivable from an arbitrary set of
propositional axioms.

20

Languages

Alphabets and Strings

• DEFINITION 1. An alphabet  is a finite, non-empty set
of abstract symbols.

• DEFINITION 2. *, the set of all strings over the
alphabet, S, is given inductively as follows.
– Basis:   *(the null string is denoted by , it is the string of

length 0, that is || = 0)
a  , a  * (the members of S are strings of length 1, |a| = 1)

– Induction rule: If x  *, and a  , then ax  * and xa  *.
Furthermore, x = x = x, and |ax| = |xa| = 1+ |x|.

– NOTE: “ax” denotes “a concatenated to x” and is formed by
appending the symbol a to the left end of x. Similarly, xa,
denotes appending a to the right end of x. In either case, if x is
the null string (), then the resultant string is “a”.

11/18/2014 COT 4210 © UCF 22

Languages

• DEFINITION 3. Let  be an alphabet. A language over  is a subset, L, of

*.

• Example. Languages over the alphabet  = {a, b}.

– Ø (the empty set) is a language over 

– * (the universal set) is a language over 

– {a, bb, aba } (a finite subset of  *) is a language over .

– { abnam | n = m2, n, m  0 } (infinite subset) is a language over .

• DEFINITION 4. Let L and M be two languages over . Then the
concatenation of L with M, denoted LM is the set,
LM = { xy | x  L and y  M }
The concatenation of arbitrary strings x and y is defined inductively as
follows.
Basis: When |x|  1 or |y|  1, then xy is defined as in Definition 2.
Inductive rule: when |x| > 1 and |y| > 1, then x = x  a for some a   and x’  *,
where |x’| = |x|-1. Then xy = x’(ay).

11/18/2014 COT 4210 © UCF 23

Operations on Strings

• Let s, t be arbitrary strings over 
– s = a1 a2 … aj , j  0, where each ai  

– t = b1 b2 … bk , k  0, where each bi  

• length: |s| = j ; |t| = k

• concatenate: = st = st =
a1 a2 … aj b1 b2 … bk ; |st| = j+k

• power: sn = ss … s (n times) Note: s0 = 

• reverse: sR = aj aj-1 … a1

• substring: for s, any ap ap+1 … aq where 1pqj
or 

11/18/2014 COT 4210 © UCF 24

Properties of Languages

• Let L, M and N be languages over , then:
– ØL = LØ = Ø

– {}L = L{} = L

– L(M  N) = LM  LN and (M  N) L = ML  NL

• Concatenation does NOT distribute over intersection.

– L0 = {} (definition)

– Ln+1 = LLn = LnL, n 0. (definition)

– L+ = L1  L2  … Ln … (definition)

– L* = L0  L1  L2  … Ln … (definition) = L0  L+

– (L*)* = L*

– (LM)*L = L(ML)*

– (L*  M*)* = (L*  M*)* = (L  M)*

– (L0  L1  L2  … Ln)L* = L*, for all n .

11/18/2014 COT 4210 © UCF 25

Computable Languages 1

Let’s go over some important facts to this point:

1. * denotes the set of all strings over some finite alphabet 

2. | * | = |N|, where N is the set of natural numbers = the smallest

infinite cardinal (the countable infinity)

3. A language L over  is a subset of *; that is, L  P(*) = 2* –

Here P denotes the power set constructor

4. | L | is countable because L  * (that is, | L | ≤ | * | = |N|)

5. | * | < | P(*) | (uncountable infinity) implies there are an

uncountable number of languages over a given alphabet, .

6. A program, P, can be represented as some string over a finite

alphabet, P; that is, P  *, and thus there are at most a countably

infinite number of programs over P.

11/18/2014 COT 4210 © UCF 26

Computable Languages 2

7. A programming language, LP, is an element of P(P*) ; | LP | is
countable.

8. Each program, P, defines a function, FP: I*  O*

9. FP defines an input language PI and an output language PO.

10. Since there are a countable number of programs, P, there can be at most
a countable number of functions FP and consequently, only a countable
number of distinct input languages and output languages associated with
programs in LP. Thus, there are only a countable number of languages
(input or output) that can be defined by any program, P.

11. But, there are an uncountable number of possible languages over any
given alphabet – see 3 and 5.

12. Thus there must be languages over a given alphabet that have no
description – in terms of a program – or in terms of an algorithm. Thus
there are only a countably infinite number of languages that are
computable among the uncountable number of possible languages.

11/18/2014 COT 4210 © UCF 27

Sets, Sequences, Relations,

Functions and Infinity

Mostly compliments of Dr.

Workman

Sets

• Sets are unordered collections of distinct objects.

• Sets can be defined or specified in many ways:
– By explicitly enumerating their members or elements

e.g. S = { a, b, c}
Note: If S' = { b, c, a}, then S and S' denote the same set (that
is, S' = S)

– By specifying a condition for membership
S = { x   | P(x) }, reads "S is the set of all x in  such that
P(x) is true"
P is called a "predicate" (a function from set  to {true, false})
E.g. S = { x  UCF | x is a CS major }

• The empty set is denoted, Ø, and is the set with no
members; that is,
 Ø = { }. Also, the predicate, x  Ø, is always false!

11/18/2014 COT 4210 © UCF 29

More on Sets

• If S  Ø, then there exists an x for which x  S is true; this predicate is read

"x is an element of S" or "x is a member of S". The symbol "" denotes the

member relation. x  S is true when x is not in S.

• We use normal set operation of union (A  B), intersection (A  B) and

complement ~A (usually A with a bar on it).

• If A and B are sets, then we write "A  B" to mean that A is a subset of B.

This means that for all x  A, x  B. Or, x [x  A  x  B].

• The expression, "A  B" means that A is a proper subset of B.

Mathematically, x [x  A  x  B] and y [y  B and y A]

Note the text uses the subset notation with a line through the lower bar, but

that symbol is not available in my fonts.

• The cross (Cartesian) product of two sets A and B is denoted, A  B, and is

the set defined as follows: A  B = { (a,b) | a  A and b  B } . "(a,b)" is an

expression composed from elements, a,b, selected arbitrarily from sets A

and B, respectively. If A  B, then A  B  B  A.

Note: (a,b) is a sequence not a set. See next slide.
11/18/2014 COT 4210 © UCF 30

Sequences

• While sets have no order and no repeated elements,
sequences have order and can contain repeats at
differing positions in the order.
– The set {5,2,5} = {5,2} = {2,5}

– The sequence (5,2,5)  (5,2)  (2,5)

• Actually, there is a notion of a multiset or bag that we
sometimes use. It has no order, but repeated elements
are allowed. Since position is irrelevant, we just record
each unique elements with a count.

• We can talk about the k-th element of a sequence, but
not of a set or multiset.

• Finite sequences are often called tuples. Those of length
k are k-tuples. A 2-tuple is also called a pair.

11/18/2014 COT 4210 © UCF 31

Relations

• A relation, r, is a mapping from some set A to

some set B;

We write, r: A  B, and we mean that r assigns to every

member of A a subset of B; that is, for every a  A,

r(a)  B and r(a)  Ø.

A relation, r, can also be defined in terms of the cross

product of A and B:

r  A  B such that for every a  A there is b  B such

that (a, b)  r.

• We say that a relation, r, from A to B is a partial relation if

and only if for some a  A, r(a) = Ø = { }.

11/18/2014 COT 4210 © UCF 32

Relations

• A relation can be graphed as illustrated by the

example below.

11/18/2014 COT 4210 © UCF 33

Example:

Let A = { a, b, c} , B = { 0, 1, 2 },

and r = { (a,0), (a,2), (b,1), (c,0) }

r(a) = { 0, 2 }

r(b) = { 1 }

r(c) = { 0 }

B

A
a b c

2

1

0

Graph of relation, r

Functions
• Functions are special types of relations. Specifically, a relation

f: A B, is said to be a (total) function from A to B if and only if,
for every a  A, f(a) has exactly one element; that is, |f(a)| = 1.

• If f is a partial function from A to B, then f may not be defined for every a  A.
In this case we write |f(a)|  1, for every a in A; note that |f(a)| = 0 if and only if
f(a) = Ø, and we say the function is undefined at a.
Note: Text calls the set of possible inputs a function’s domain. We will often
use domain for the set of input values on which f is defined, referring to the
input set as the universe of discourse. If a function is total (defined
everywhere) then there is no terminology difference.

• A function, f, is said to be one-to-one (1-1) if and only if x  y implies
f(x)  f(y). A total function that is one-to-one is sometimes called an injection.

• A function, f: A B, is said to be onto if and only if for every y  B there is an
x  A such that y = f(x).
Note: technically we should write {y} = f(x), since functions are relations,
however, the more convenient and less baroque notation is used when
dealing with functions. Total functions that are onto are called surjections.
Ones that are 1-1 and onto are called bijections.

11/18/2014 COT 4210 © UCF 34

Ordinal and Cardinal Numbers

Definition. Ordinal numbers are symbols used to designate relative
position in an ordered collection. The ordinals correspond to the
natural numbers: 0, 1, 2, … The set of all natural (ordinal) numbers
is denoted, N. (Note: Here we include 0 as a natural number.)

A fundamental concept in set theory is the size of a set, S. We begin
with a definition.

Definition. Let S be any set. We associate with S, the unique symbol
|S| called its cardinality. Symbols of this kind are called cardinal
numbers and denote the size of the set with which they are
associated.
|Ø| = 0 (the cardinal number defining the size of the empty set is
the ordinal, 0)
If S = {0, 1, 2, 3, …, n-1}, for some natural number n>0, then |S|=n.
To summarize, the cardinality of any finite set (including the empty
set) is simply the ordinal number that specifies the number of
elements in that set.

11/18/2014 COT 4210 © UCF 35

More on Cardinality

To determine the relative size of two sets, we need the following

definitions:

Definition. If A and B are two sets, then |A|  |B| if and only if there

exists an injection, f, from A to B; f is a 1-1 function from A into B.

Definition. If A and B are two sets, then |A| = |B| if and only if |A|  |B|

and |B|  |A|. We may also say that |A| = |B| if and only if there is a

bijection, f, from A to B; f is a 1-1 function from A onto B.

Definition. If A and B are two sets, then |A| < |B| if and only if |A|  |B|

and |A|  |B|.

Definition. A set S is said to be finite if and only if |S|  N; otherwise, S

is said to be infinite. A set S is said to be countable if and only if S is

finite or |S| = | N |; otherwise S is said to be uncountable.

11/18/2014 COT 4210 © UCF 36

Infinities

By the definitions above, there are many infinite

sets with which you are familiar.

For example:

N (the set of Natural numbers), Z (the set of

Integers), Z+ (the set of Positive Integers), Q (the

set of Rational numbers) and R (the set of Real

numbers).

But, are all these infinite sets the same size??

Brash statement: |N| = |Z+| = |Z| = |Q| < |R|.

11/18/2014 COT 4210 © UCF 37

Cantor and Infinities

The previous “brash” statement suggests there are at least two infinite
cardinals, |N| and |R|. Furthermore, |N| is a countable cardinal and
|R| is an uncountable cardinal. In fact there are infinitely many
distinct cardinal numbers representing infinite sets!

In addition to these facts, Cantor proved that there is a smallest infinite
cardinal number. He designated this smallest infinite cardinal
number, 0 , named “aleph-null”; aleph is a symbol in the Hebrew
alphabet. He further showed that given any cardinal number, k ,

there is a next smallest cardinal number, k+1.
Cantor was able to prove that |N| = 0, and although many

mathematicians believe that 1 = |R|, this has never been proven
from the axioms of mathematical set theory.

11/18/2014 COT 4210 © UCF 38

Power Set

11/18/2014 COT 4210 © UCF 39

Definition. Let S be a set, then the power set of S, denoted
P(S) or 2S, is defined by

 P(S) = { A | A  S }.

Examples.
P(Ø) = {Ø},

P({1,2,3}) = {Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}

P(N) = {Ø, {0}, {1}, {2}, {3}, …

 , {0,1}, {0,2}, {0,3}, …

 , {0,1,2}, …

 … N }

How Many Infinities?

• The theorem stated and proven next is due to Cantor
and gives us a mechanism for defining two sets of
distinctly different cardinality (one being strictly larger
than the other). By inductively applying Cantor’s
theorem it follows that there are infinitely many cardinal
numbers denoting the sizes of infinite sets. Cantor’s
theorem uses the power set of a given set.

11/18/2014 COT 4210 © UCF 40

Cantor’s Theorem

11/18/2014 COT 4210 © UCF 41

Theorem (Cantor). Let S be any set. Then |S| < |P(S)|.

Proof.
Case1: Suppose S = Ø. Then P(S) = {Ø}. Since |S| = 0 and |P(S)| = 1, the result holds.

Case2: Assume S  Ø.
(a) First we show that |S|  |P(S)|.

To show this we must find an injection, f, from S to P(S).

Consider f(x) = {x}. Clearly, f(x)  P(S) for all x S.

Furthermore, if x  y, then f(x) = {x}  {y} = f(y).
Thus f is the desired function and we may conclude that |S|  |P(S)|.

(b) Next we wish to show |S| |P(S)|. We do this by contradiction.

Assume |S| = |P(S)|, then by definition of equality of cardinal numbers, there is a

function, f, that is 1-1 and onto from S to P(S).

Define Z = { x  S | x  f(x) }. Clearly, Z is a subset (possibly empty) of S.

Therefore there is a y  S such that f(y) = Z. This follows from our assumption that f
is onto P(S). Then either y  Z or y  Z.

(b.1) Suppose y  Z , then by definition of Z, y  f(y) = Z; a contradiction.

(b.2) Suppose y  Z, then by definition of Z, y  f(y) = Z; a contradiction.

Since the existence of f led to this logical absurdity, we must conclude that f cannot
exist and thus |S| = |P(S)| is false. This establishes (b).

 (a) and (b) together imply |S| < |P(S)|.

Corollaries

• If |S| = |N|, then |P(S)| > |N| = 0 .

• There are sets whose cardinalities are greater than
0. These sets are uncountably infinite, whereas
those that correspond to N are countably infinite.

• Note that a set can be countable and yet there is no
effective way to describe its correspondence with N.
Look back and you will see that the definition just
says that an injective function exists, not that this
function is actually computable.

11/18/2014 COT 4210 © UCF 42

Cardinalities of Z and Q

1. We show that | N | = | Z |.

| N |  | Z |: Define g: N  Z as follows: g(i) = i

| Z |  | N |: Define f: Z N as follows:

2. To show | N | = | Q | we develop the proof in two steps:

(a) Lemma – prove that |A|  |S| for every subset A of S.

 Note: This is what we did for | N |  | Z |

 (b) Prove that | N  N | = | N |.

11/18/2014 COT 4210 © UCF 43

x= 0 1 -1 2 -2

f(x)= 0 1 2 3 4 















0 x if ,2x -

0 x if 1,-2x

0 x if , 0

)(xf

|Subset|  |Parent Set|

Lemma A. |A|  |S|, for every subset A of S.

Proof. Let A be a subset of S. To establish that |A|  |S|

we need to find a 1-1 function from A into S. The identity

function, f(x) = x, is the desired function; clearly, if x  y,

then f(x) = x  y = f(y). Since, f(x)  S, for every x in A,

the lemma is proved.

11/18/2014 COT 4210 © UCF 44

| N  N | = | N |
Lemma B. | N  N | = | N |.

Proof. Let S = N  N = {(k,j) | k,j  N}. Define the function, f((k,j)) = ((k+j)(k+j+1))/2 + j.

Clearly f is a function, since the defining expression is single-valued.

 Furthermore,  k,j  N, f((k,j))  0. We have to show that f is 1-1 and onto N.

To show f is 1-1, let (k, j) and (k', j') be two distinct elements of S.

There are two cases to consider. (a) k+j = k'+j', or (b) k+j < k'+j' (or k'+j' < k+j).

 Assume (a). Then f((k,j)) – f((k',j')) = j – j' (we can assume without loss of generality

that j-j'  0). If j-j' = 0, then j = j'. Thus k+j = k'+j' implies k = k', but this contradicts our

assumption that (k,j) and (k',j') are distinct elements of S. Thus we must assume that

j-j' > 0. It follows immediately that f((k,j))  f((k',j').

 Assume (b). Then we can assume k+j < k'+j' = k+j+a, for some a > 0. Now suppose

f(k',j')) = f((k,j)). Substituting k+j+a for k'+j' in the formula for f((k',j')) and equating to

f((k,j)), and doing the algebra we arrive at j = aj + y, where y is some positive number.

Clearly this relation cannot hold for any non-negative j and a > 0. We must conclude

that f((k,j))  f((k',j'). Thus f is 1-1.

 To show that f is onto N, we need to show that given any m  0, there is a (k,j) such

that f((k,j)) = m. Let x be the largest non-negative integer such that x(x+1)/2  m. It

follows that (x+1)(x+2)/2 > m. Now choose j = m - x(x+1)/2 and k = x-j. It follows that

f((k,j)) = m.
11/18/2014 COT 4210 © UCF 45

Proof That | N | = | Q |

By definition, Q = { (a,b) | a  Z and b  Z+ }

| Q |  | N |.
 Q  Z  N. Thus | Q |  | Z  N | by Lemma A.

But | Z  N | = | N  N | using an argument similar to that
showing | Z | = | N |. (Define g by g(a,b) = (f(a),b)) where f
is the function used to map Z to N.)
By Lemma B it follows that | Q |  | N |.

| N |  | Q |.
 Define f(a) = (a,1). This is a 1-1 mapping from N into Q,

showing | Q |  | N |.

Thus, | N | = | Q |.

11/18/2014 COT 4210 © UCF 46

Assignment # 1

1. Prove or disprove that, for sets A and B,
A=B if and only if (A  ~ B)  (A  B) = A.

2. Prove that, for Boolean (T/F) variables P and Q,
((P  Q)  Q)  (P  Q)
 is logical or;  is logical implication;  is logical equivalence

3. Prove: If S is any finite set with |S| = n, then
|SSSSS | ≤ |P(S)|, for all nN, where N is some constant, the
minimum value of which you must discover and use as the basis
for your proof.

4. Consider the function pair: N  N  N
defined by pair(x,y) = 2x (2y + 1) – 1
Show that pair is a bijection (1-1 onto N).
Note that I already showed this is a surjection in the Sample, so
your assignment is to show it is an injection (1-1), not just onto.

Due: Thursday, 8/28, at start of class (1:30PM)

11/18/2014 COT 4210 © UCF 47

Computability

The study of what can/cannot be

done via purely mechanical

means

Basic Definitions

The Preliminaries

11/18/2014 COT 4210 © UCF 50

Effective Procedure

• A process whose execution is clearly specified to the
smallest detail

• Such procedures have, among other properties, the
following:
– Processes must be finitely describable and the language used to

describe them must be over a finite alphabet.

– The current state of the machine model must be finitely
presentable.

– Given the current state, the choice of actions (steps) to move to
the next state must be easily determinable from the procedure’s
description.

– Each action (step) of the process must be capable of being
carried out in a finite amount of time.

– The semantics associated with each step must be clear and
unambiguous.

50

11/18/2014 COT 4210 © UCF 51

Algorithm

• An effective procedure that halts on all

input

• The key term here is “halts on all input”

• By contrast, an effective procedure may

halt on all, none or some of its input.

• The domain of an algorithm is its entire

domain of possible inputs.

51

11/18/2014 COT 4210 © UCF 52

Sets, Problems & Predicates

• Set -- A collection of atoms from some

universe U. Ø denotes the empty set.

• (Decision) Problem -- A set of questions,

each of which has answer “yes” or “no”.

• Predicate -- A mapping from some

universe U into the Boolean set {true,

false}. A predicate need not be defined for

all values in U.

52

11/18/2014 COT 4210 © UCF 53

How They relate

• Let S be an arbitrary subset of some universe U. The
predicate cS over U may be defined by:

 cS(x) = true if and only if x  S

 cS is called the characteristic function of S.

• Let K be some arbitrary predicate defined over some
universe U. The problem PK associated with K is the
problem to decide of an arbitrary member x of U,
whether or not K(x) is true.

• Let P be an arbitrary decision problem and let U denote
the set of questions in P (usually just the set over which
a single variable part of the questions ranges). The set
SP associated with P is

 { x | x  U and x has answer “yes” in P }

53

11/18/2014 COT 4210 © UCF 54

Categorizing Problems (Sets)

• Solvable or Decidable -- A problem P is said to

be solvable (decidable) if there exists an

algorithm F which, when applied to a question q

in P, produces the correct answer (“yes” or

“no”).

• Solved -- A problem P is said to solved if P is

solvable and we have produced its solution.

• Unsolved, Unsolvable (Undecidable) --

Complements of above

54

11/18/2014 COT 4210 © UCF 55

Existence of Undecidables

• A counting argument
– The number of mappings from  to  is at least as

great as the number of subsets of . But the number
of subsets of  is uncountably infinite (1). However,
the number of programs in any model of computation
is countably infinite (0). This latter statement is a
consequence of the fact that the descriptions must be
finite and they must be written in a language with a
finite alphabet. In fact, not only is the number of
programs countable, it is also effectively enumerable;
moreover, its membership is decidable.

• A diagonalization argument
– Will be shown later in class

55

11/18/2014 COT 4210 © UCF 56

Categorizing Problems (Sets) # 2

• Recursively enumerable -- A set S is recursively
enumerable (re) if S is empty (S = Ø) or there
exists an algorithm F, over the natural numbers
, whose range is exactly S. A problem is said
to be re if the set associated with it is re.

• Semi-Decidable -- A problem is said to be semi-
decidable if there is an effective procedure F
which, when applied to a question q in P,
produces the answer “yes” if and only if q has
answer “yes”. F need not halt if q has answer
“no”.

56

11/18/2014 COT 4210 © UCF 57

Goals of Computability

• Provide precise characterizations (computational
models) of the class of effective procedures / algorithms.

• Study the boundaries between complete and incomplete
models of computation.

• Study the properties of classes of solvable and
unsolvable problems.

• Solve or prove unsolvable open problems.

• Determine reducibility and equivalence relations among
unsolvable problems.

• Our added goal is apply these techniques and results
across Computer Science.

57

11/18/2014 COT 4210 © UCF 58

p is irrational

Prove, if p is a prime number, then p is irrational.
Hint: Look at Theorem 0.24 in Sipser.

Assume p is a rational number. Let q/r be the reduced fraction (no
common prime factors) that equals p.
p = q/r : assumption
r p = q : multiply both sides by r
r2p = q2 : square both sides
Since r and q have no common prime factors, then p must be a prime
factor of q, so
r2p = (kp)2 : for some positive integer k
r2 = k2p : divide both sides by p
Since r and q have no common prime factors, r and k have no common
prime factor and so p must be a prime factor of r. But then q/r is not
reduced as both q and r have the common prime factor p. This
contradicts our original assumption that is p rational, so it is irrational.
QED

Assignment # 2

1. Let L be a language over {a,b} where every string is of
even length and is of the form WX, where |W|=|X| but
W≠X. Design and present an algorithm that recognized
strings in L using no unbounded amount of storage (no
stacks, no queues). This means that any memory
required must be of a fixed size independent of the
length of an input string. Note: You cannot play the
game of using unbounded recursion, as each call
consumes stack space.

2. Present a language L over  = {a} where L4 = L5 but
L ≠ L2 and L2 ≠ L3 and L3 ≠ L4
Note: Lk = { x1x2…xk | x1,x2,…,xk  L }

Due: Thursday, September 4, at start of class (1:30PM)

11/18/2014 COT 4210 © UCF 59

Complexity

Complexity vs ..

• Complexity seeks to categorize problems
as easy (polynomial) or hard (exponential
or even worse). Some parts focus on time;
others on space.

• Computability seeks to categorize problem
as algorithmically solvable or not.

• Algorithm Design & Analysis tries to find
the fastest possible data structures and
algorithms to solve problems.

11/18/2014 COT 4210 © UCF 61

P and NP

• P is the set (class) of problems solvable in
polynomial time using a computer with a
fixed number of processors.

• NP is the set of problems solvable in
polynomial time using a finite but
unbounded number of processors.

• Note: P vs NP also means deterministic
versus non-deterministic polynomial time.

• Big question: Is P = NP?

11/18/2014 COT 4210 © UCF 62

Regular Languages

Outline

11/18/2014 COT 4210 © UCF 64

Regular Languages # 1

• Finite Automata

• Moore and Mealy models: Automata with output.

• Regular operations

• Non-determinism: Its use. Conversion to
deterministic FSAs. Formal proof of equivalence.

• Lambda moves: Lambda closure of a state

• Regular expressions

• Equivalence of REs and FSAs.

• Pumping Lemma: Proof and applications.

64

11/18/2014 COT 4210 © UCF 65

Regular Languages # 2

• Regular equations: REQs and FSAs.

• Myhill-Nerode Theorem: Right invariant
equivalence relations. Specific relation for a
language L. Proof and applications.

• Minimization: Why it's unique. Process of
minimization. Analysis of cost of different
approaches.

• Regular (right linear) grammars, regular
languages and their equivalence to FSA
languages.

65

11/18/2014 COT 4210 © UCF 66

Regular Languages # 3

• Closure properties: Union, concat, *,
complement, reversal, intersection, set
difference, substitution, homomorphism and
inverse homomorphism, INIT, LAST, MID,
EXTERIOR, quotient (with regular set, with
arbitrary set).

• Algorithms for reachable states and states that
can reach a point.

• Decision properties: Emptiness, finiteness,

equivalence.

66

FSA and Sequential Circuits

• A synchronous sequential circuit has

– Binary input lines (input admitted at clock tick)

– Binary output lines (simple case is one line)

• 1 accepts; 0 rejects input

– Internal flip flops (memory) that defines state

– Simple combinatorial circuits (and, or, not)

that combine state and input to alter state

– Simple combinatorial circuits (and, or, not)

that use state to determine output

11/18/2014 COT 4210 © UCF 67

FSAs and Pattern Matching

• Will do some in class

• Think about FSA to recognize the string

PAPAPAT appearing somewhere in a

corpus of text, say with a substring

PAPAPAPATRICK

11/18/2014 COT 4210 © UCF 68

Lexical Analysis

• Consider distinguishing variable names

from keywords like IF, THEN, ELSE, etc.

• This really screams for non-determinism

• Non deterministic automat typically have

fewer states

• However, non-deterministic FSA

interpretation is not as fast as deterministic

11/18/2014 COT 4210 © UCF 69

Game Behaviors

• Consider adding actions and weights on
transitions

• Input to FSA enables some (possibility no)
transitions from current state

• Each weight is a probability that a transition is
fired if more than one is enabled

• Actions are initiated during transition

• Have an FSA per object, with communication
occurring between FSAs and from environment,
e.g., game controllers, trackers, etc.

11/18/2014 COT 4210 © UCF 70

11/18/2014

Assignment # 3

1. Present a transition diagram for a NFA that recognizes the set of binary
strings that starts with a 1 and, when interpreted as entering the DFA
most to least significant digit, each represents a binary number that is
divisible by either five or six. Thus, 101, 110, 1100, 1111 are in the
language, but 111, 1011 and 11010 are not.
OR
Present a DFA that recognizes such binary strings that represent a
number that is either 5 Mod 6 or 0 Mod 6.

2. a.) Present a transition diagram for an NFA for the language associated
with the regular expression (1001 + 110 + 11)*. Your NFA must have no
more than five states.
b.) Use the standard conversion technique (subsets of states) to convert
the NFA from (a) to an equivalent DFA. Be sure to not include
unreachable states. Hint: This DFA should have no more than six states.

3. Using DFA’s (not any equivalent notation) show that the Regular
Languages are closed under Min, where
Min(L) = { w | w  L, but no proper prefix of w is in L}.. This means that w
 Min(L) iff w  L and for no y≠λ is x in L, where w=xy. Said a third way,
w is not an extension of any element in L.

Due: Thursday, September 11, at start of class (1:30PM)

COT 4210 © UCF 71 71 COT 4210 © UCF

Regular Expressions

• Primitive:

– Φ denotes {}

– λ denotes {λ}

– a where a is in Σ denotes {a}

• Closure:

– If R and S are regular expressions then so are R ° S, R + S and

R*, where

• R ° S denotes RS = { xy | x is in R and y is in S }

• R + S denotes RS = { x | x is in R or x is in S }

• R* denotes R*

• Parentheses are used as needed

11/18/2014 COT 4210 © UCF 72

Regular Languages =

Finite State Languages
• Show every regular expression denotes a

language recognized by a finite state

automaton (can do deterministic or non-

deterministic)

• Show every Finite State Automata

recognizes a language denoted by a

regular expression

11/18/2014 COT 4210 © UCF 73

Regular Equations

• Assume that R, Q and P are sets such that P

does not contain the string of length zero, and R

is defined by

• R = Q + RP

• We wish to show that

• R = QP*

11/18/2014 COT 4210 © UCF 74

Show QP* is a Solution

• We first show that QP* is contained in R. By

definition, R = Q + RP.

• To see if QP* is a solution, we insert it as the

value of R in Q + RP and see if the equation

balances

• R = Q + QP*P = Q(λ+P*P) = QP*

• Hence QP* is a solution, but not necessarily the

only solution.

11/18/2014 COT 4210 © UCF 75

Uniqueness of Solution

• To prove uniqueness, we show that R is contained in QP*.

• By definition, R = Q+RP = Q+(Q+RP)P

• = Q+QP+RP2 = Q+QP+(Q+RP)P2

• = Q+QP+QP2+RP3

• ...

• = Q(λ+P+P2+ ... +Pi)+RPi+1, for all i>=0

• Choose any W in R, where |W| = k. Then, from above,

• R = Q(λ+P+P2+ ... +Pk)+RPk+1

• but, since P does not contain the string of length zero, W is not in

RPk+1. But then W is in

• Q(λ+P+P2+ ... +Pk) and hence W is in QP*.

11/18/2014 COT 4210 © UCF 76

Example

• We use the above to solve simultaneous regular

equations. For example, we can associate regular

expressions with finite state automata as follows

• Hence,

• A = B10* + 0*

• B = B10*1 + B0 + 0*1

• and therefore

• B = 0*1(10*1 + 0)*

• Note: This technique fails if there are lambda transitions.
11/18/2014 COT 4210 © UCF 77

Convert from NFA to DFA

11/18/2014 COT 4210 © UCF 78

Minimize States

11/18/2014 COT 4210 © UCF 79

Convert to RE

11/18/2014 COT 4210 © UCF 80

q2 q3 q1

0

1 1

0, 1

0 1

q2 q3 q1

0

1
1

0, 1

0
1

• R11
0=  R12

0= 0 R13
0= 

• R21
0= 0 R22

0=  + 1 R23
0= 0 + 1

• R31
0=  R32

0= 1 R33
0=  + 1

• R11
1=  R12

1= 0 R13
1= 

• R21
1= 0 R22

1=  + 1 + 00 R23
1= 0 + 1

• R31
1 =  R32

1= 1 R33
1=  + 1

• R11
2=  + 01*0 R12

2= 0(1+00)* R13
2= 0(1+00)*(0+1)

• R21
2= (1+00)*0 R22

2= (1+00)* R23
2= (1+00)*(0+1)

• R31
2= 1(1+00)*(0+1) R32

2= 1(1+00)* R33
2= +1+1(1+00)*(0+1)

• L = R12
3=

0(1+00)* + 0(1+00)*(0+1) (1+1(1+00)*(0+1))* 1(1+00)*

11/18/2014 COT 4210 © UCF 81

Use Ripping; Rip q3

11/18/2014 COT 4210 © UCF 82

q2 q3 q1

0

1 1

0+1

0 1

qf





q0

q2 q1

0

0 1+(0+1)1+

qf





q0

Use Ripping; Rip q1

11/18/2014 COT 4210 © UCF 83

q2 q1

0

0 1+(0+1)1+

qf





q0

q2

0

1+(0+1)1++00

qf



q0

Use Ripping; Rip q2

11/18/2014 COT 4210 © UCF 84

q2

0

1+(0+1)1++00

qf



q0

0 (1+(0+1)1++00)*

qf



q0

L = 0 (1+(0+1)1++00)* = 0 (1+(0+1)1++00)*

Use Regular Equations

11/18/2014 COT 4210 © UCF 85

B C A

0

1 1

0, 1

0 1

A =  + B0

B = A0 + C1 + B1

C = B(0+1) + C1; C = B(0+1)1*

B = 0 + B00 + B(0+1)1+ + B1

B = 0 + B (00+(0+1) 1+ + 1); B = 0(00 +(0+1)1+ + 1)*

This is same form as with state ripping. It won’t always be so.

Pumping Lemma Problems

• Use the Pumping Lemma to show each of

the following is not regular

– { 0m 12n | m  n }

– { wwR | w  {a,b}+ }

– { 1n2
 | n > 0 }

– { ww | w  {a,b}+ }

11/18/2014 COT 4210 © UCF 86

NFAs

• Write NFAs for each of the following

– (111 + 000)+

– (0+1)* 101 (0+1)+

– (1 (0+1)* 0) + (0 (0+1)* 1)

11/18/2014 COT 4210 © UCF 87

Convert NFA to DFA

• Convert each NFA you just created to an

equivalent DFA.

11/18/2014 COT 4210 © UCF 88

DFAs to REs

• For each of the DFAs you created for the

previous page, use ripping of states and

then regular equations to compute the

associated regular expression. Note: You

obviously ought to get expressions that

are equivalent to the initial expressions

from two pages ago.

11/18/2014 COT 4210 © UCF 89

11/18/2014

Assignment # 4

COT 4210 © UCF 90 90 COT 4210 © UCF

1. Convert the following NFA to an equivalent DFA.

2. Convert the DFA you developed in #1 to a regular expression, first by using either
the GNFA (or state ripping) or Rij(k) approach, and then by using regular
equations. You must show all steps in each part of this assignment.

 Due: Thursday, September 18, at start of class (1:30PM).

What is Regular So Far?

• Any language accepted by a DFA

• Any language accepted by an NFA

• Any language specified by a Regular

Expression

• Any language representing the unique

solution to a set of properly constrained

regular equations

11/18/2014 COT 4210 © UCF 91

What More is Regular?

• Any language generated by a right linear

grammar

• Any language generated by a left linear

grammar

• Any language that is the union of some of

the classes of a right invariant equivalence

relation of finite index

11/18/2014 COT 4210 © UCF 92

What is NOT Regular?

• Well, I suppose anything for which you

cannot write an accepting DFA or NFA, or

a defining regular expression, or a right/left

linear grammar, or a set of regular

equations, but that’s not a very useful

statement

• There are two tools we have:

– Pumping Lemma for Regular Lnaguges

– Myhill-Nerode Theorem
11/18/2014 COT 4210 © UCF 93

Pumping Lemma For Regular

• L is regular iff there exists an N>0 such

that, if w  L and |w| ≥ N, then w can be

written in the form xyz, where |xy| ≤ N,

|y|>0, and for all i≥0, xyiz  L.

• This means that interesting regular

languages (infinite ones) have a very

simple self-embedding property.

11/18/2014 COT 4210 © UCF 94

Pumping Lemma Proof

• If L is regular then it is recognized by some DFA, A=(Q,,d,q0,F). Let |Q| = N

states. For any string w, such that |w| ≥ N, A must make N+1 state visits to

consume its first N characters, followed by |w|-N more state visits.

• In its first N+1 state visits, A must enter at least one state two or more times.

• Let w = v1…vi…vj…vm, where m =|w|, and d(q0,v1…vi)=d(q0,v1…vj), j>I, and

this state representing the first one repeated while A consumes w.

• Define x = v1…vi, y = vi+1…vj, and z = vj+1…vm. Clearly w=xyz. Moreover,

since j > i, |y| > 0, and since j ≤ N, |xy| ≤ N.

• Since A is deterministic, d(q0,xy)=d(q0,xyi), for all i≥0.

• Thus, if w  L, d(q0,xyz)  F, and so d(q0,xyiz)  F, for all i≥0.

• Consequently, if w  L, |w|≥N, then w can be written in the form xyz, where

|xy| ≤ N, |y|>0, and for all i≥0, xyiz  L.

11/18/2014 COT 4210 © UCF 95

Lemma’s Adversarial Process

• Assume L = {anbn | n>0 } is regular

• P.L.: Provides N>0

– We CANNOT choose N; that’s the P.L.’s job

• Our turn: Choose aNbN  L

– We get to select a string in L

• P.L.: aNbN = xyz, where |xy| ≤ N, |y|>0, and for all i≥0, xyiz  L

– We CANNOT choose split, but P.L. is constrained by N

• Our turn: Choose i=0.

– We have the power here

• P.L: aN-|y|bN  L; just a consequence of P.L.

• Our turn: aN-|y|bN  L; just a consequence of L’s structure

• CONTRADICTION, so L is NOT regular

 11/18/2014 COT 4210 © UCF 96

xwx is not Regular (PL)

• L = { x w x | x,w∈{a,b}+} :

• Assume that L is Regular.

• PL: Let N>0 be given by the Pumping Lemma.

• YOU: Let s be a string, s ∈ L, such that s = aNbaaNb

• PL: Since s ∈ L and |s| ≥ N, s can be split into 3 pieces, s = xyz, such that

|xy| ≤ N and |y| > 0 and ∀ i ≥ 0 xyiz ∈ L

• YOU: Choose i = 2

• PL: xy2z = xyyz ∈ L (could also use i = 0)

• Thus, aN + |y|baaNb would be in L, this is not so since N+|y| ≠ N and we

cannot merge other a since must have |w|>0

• We have arrived at a contradiction.

• Therefore L is not Regular.

11/18/2014 COT 4210 © UCF 97

Myhill-Nerode Theorem

The following are equivalent:

1.L is accepted by some DFA.

2.L is the union of some of the classes of a right invariant

equivalence relation, R, of finite index.

3.The specific right invariance equivalence relation

RL where x RL y iff z [xz  L iff yz  L]

has finite index

Definition. R is a right invariant equivalence relation iff R is

an equivalence relation and z [x R y implies xz R yz].

Note: This is only meaningful for relations over strings.

11/18/2014 COT 4210 © UCF 98

Use of Myhill-Nerode

• L = {anbn | n>0 } is NOT regular.

• Assume otherwise.

• M-N says that the specific r.i. equiv. relation RL has finite

index, where x RL y iff z [xz  L iff yz  L].

• Consider the equivalence classes [aib] and [ajb], where

i,j>0 and i ≠ j.

• aibbi-1  L but ajbbi-1  L and so [aib] is not related to

[ajb] under RL and thus [aib] ≠ [ajb].

• This means that RL has infinite index.

• Therefore L is not regular.

11/18/2014 COT 4210 © UCF 99

xwx is not Regular (MN)

• L = { x w x | x,w∈{a,b}+} :

• Assume that L is Regular.

• We consider the right invariant equivalence class [ajb].

• It’s clear that ajbaajb is in the language, but ajbaakb is

not when k < j.

• This shows that there is a separate equivalence class,

[ajb], induced by RL, for each j>0. Thus, the index of RL is

infinite and Myhill‐Nerode states that L cannot be

Regular.

11/18/2014 COT 4210 © UCF 100

Finite State Transducers

• A transducer is a machine with output

• Mealy Model

– M = (Q, , G, d, g, q0)

G is the finite output alphabet

g: Q ×   G is the output function

– Essentially a Mealy Model machine produced a character of

output for each character of input it consumes, and it does so on

the transitions from one state to the next.

– A Mealy Model represents a synchronous circuit whose output is

triggered each time a new input arrives.

11/18/2014 COT 4210 © UCF 101

Finite State Transducers

• Moore Model

– M = (Q, , G, d, g, q0)

G is the finite output alphabet

g: Q  G is the output function

– Essentially a Moore Model machine produced a

character of output whenever it enters a state,

independent of how it arrived at that state.

– A Moore Model represents an asynchronous circuit

whose output is a steady state until new input arrives.

11/18/2014 COT 4210 © UCF 102

11/18/2014

Assignment # 5

1. For each of the following, prove it is not regular by using the Pumping Lemma or
Myhill-Nerode. You must do at least two of these using the Pumping Lemma and at
least two using Myhill-Nerode.

a. { aFib(k) | k>0 } This is set {a1, a1, a2, a3, a5, a8, a13, a21, … }

b. { aibjck | i≥0, j≥0, k≥0, k = min(i,j) }

c. { aibjck | i≥0, j≥0, k≥0, j = i * k }

d. { aibjck | i≥0, j≥0, k≥0, if i=1 then j>k }

e. { w | w  {a, b}* and w = wR } this is the set of palindromes. It contains strings like aa,
abba, abaaba

2. Write a Mealy finite state machine that produces the 2’s complement result of
subtracting 1101 from a binary input stream (assuming at least 4 bits of input)

3. Write a regular (right linear) grammar that generates the set of strings denoted by the
regular expression ((10)+ (011 + 1)+)* (0+101)*

Due: Thursday, October 9, at start of class (1:30PM).

COT 4210 © UCF 103 103 COT 4210 © UCF

History of Formal Language

• In 1940s, Emil Post (mathematician) devised rewriting systems as a

way to describe how mathematicians do proofs. Purpose was to

mechanize them.

• Early 1950s, Noam Chomsky (linguist) developed a hierarchy of

rewriting systems (grammars) to describe natural languages.

• Late 1950s, Backus-Naur (computer scientists) devised BNF (a

variant of Chomsky’s context-free grammars) to describe the

programming language Algol.

• 1960s was the time of many advances in parsing. In particular,

parsing of context free was shown to be no worse than O(n3). More

importantly, useful subsets were found that could be parsed in O(n).

11/18/2014 © UCF EECS 104

Formalism for Grammars

Definition : A language is a set of strings of characters from some alphabet.

The strings of the language are called sentences or statements.

A string over some alphabet is a finite sequence of symbols drawn from that

alphabet.

A meta-language is a language that is used to describe another language.

A very well known meta-language is BNF (Backus Naur Form)

It was developed by John Backus and Peter Naur, in the late 50s, to describe

programming languages.

Noam Chomsky in the early 50s developed context free grammars which can

be expressed using BNF.

11/18/2014 © UCF EECS 105

Grammars

• G = (V, Σ, R, S) where

– V: Finite set of non-terminal symbols

– Σ: Finite set of terminal symbols

– R: finite set of rules of form α  β,

• α in (V  Σ)* V (V  Σ)*

• β in (V  Σ)*

– S: a member of V called the start symbol

• Right linear restricts all rules to be of forms

– α in V

– β of form ΣV, Σ or λ

11/18/2014 COT 4210 © UCF 106

Derivations

• x  y reads as x derives y iff

– x = γαδ, y = γβδ and α  β

• * is the reflexive, transitive closure of 

• + is the transitive closure of 

• x * y iff x = y or x * z and z  y

• Or, x * y iff x = y or x  z and z * y

• L(G) = { w | S * w } is the language

generated by G.

 11/18/2014 COT 4210 © UCF 107

Context Free Grammars

G = (V, , R, S) where

V is a finite set of symbols called the non-terminals or variables

(sometimes denoted N). They are not part of the language generated

by the grammar.

 is a finite set of symbols, disjoint from V, called the terminals. Strings

in the language are made up entirely of terminal symbols.

S is a member of V and is called the start symbol.

R is a finite set of rules or productions. Each member of R is one the

form

A   where  is a strings (V)*

 Note that the left hand side of a rule is a letter in V;

 The right hand side is a string from the combined alphabets

 The right hand side can even be empty ( or λ)

 11/18/2014 © UCF EECS 108

Interesting Sample CFG

Example of a grammar for a small language:

G = ({<program>, <stmt-list>, <stmt>, <expression>},

 {begin, end, ident, ;, =, +, -}, R, <program>) where R is

 <program>  begin <stmt-list> end

 <stmt-list>  <stmt> | <stmt> ; <stmt-list>

 <stmt>  ident = <expression>

 <expression>  ident + ident | ident - ident | ident

Here “ident” is a token return from a scanner, as are “begin”, “end”, “;”, “=”,

“+”, “-”

Note that “;” is a separator (Pascal style) not a terminator (C style).

11/18/2014 © UCF EECS 109

Derivation

11/18/2014 © UCF EECS 110

A sentence generation is called a derivation.

Grammar for a simple

assignment statement:

R1 <assgn>  <id> := <expr>

R2 <id>  a | b | c

R3 <expr>  <id> + <expr>

R4 | <id> * <expr>

R5 | (<expr>)

R6 | <id>

The statement a := b * (a + c)

Is generated by the leftmost derivation:

<assgn>  <id> := <expr> R1

  a := <expr> R2

  a := <id> * <expr> R4

  a := b * <expr> R2

  a := b * (<expr>) R5

  a := b * (<id> + <expr>) R3

  a := b * (a + <expr>) R2

  a := b * (a + <id>) R6

  a := b * (a + c) R2 In a leftmost derivation only the

leftmost non-terminal is replaced

Parse Trees

11/18/2014 © UCF EECS 111

A parse tree is a graphical representation of a derivation

For instance the parse tree for the statement a := b * (a + c) is:

 <assign>

 <id> := <expr>

 a <id> * <expr>

 b (<expr>)

 <id> + <expr>

 a <id>

 c

Every internal node of a

parse tree is labeled with

a non-terminal symbol.

Every leaf is labeled with a

terminal symbol.

The generated string is read

left to right

Ambiguity

A grammar that generates a sentence for which there are two or more

distinct parse trees is said to be “ambiguous”

For instance, the following grammar is ambiguous because it generates

distinct parse trees for the expression a := b + c * a

 <assgn>  <id> := <expr>

 <id>  a | b | c

 <expr>  <expr> + <expr>

 | <expr> * <expr>

 | (<expr>)

 | <id>

11/18/2014 © UCF EECS 112

Ambiguous Parse

11/18/2014 © UCF EECS 113

This grammar generates two parse trees for the same expression.

If a language structure has more than one parse tree,

the meaning of the structure cannot be determined uniquely.

 <assign>

 <id> := <expr>

 A <expr> + <expr>

 <id> <expr> * <expr>

 B <id> <id>

 C A

 <assign>

 <id> := <expr>

 A <expr> * <expr>

 <expr> + <expr> <id>

 <id> <id> A

 B C

Precedence

11/18/2014 © UCF EECS 114

Operator precedence:
If an operator is generated lower in the parse tree, it indicates that the

operator has precedence over the operator generated higher up in the tree.

An unambiguous grammar for expressions:

 <assign>  <id> := <expr>

 <id>  a | b | c

 <expr>  <expr> + <term>

 | <term>

 <term>  <term> * <factor>

 | <factor>

 <factor>  (<expr>)

 | <id>

This grammar indicates the usual

precedence order of multiplication and

addition operators.

This grammar generates unique parse

trees independently of doing a

rightmost or leftmost derivation

Left (right)most Derivations

11/18/2014 © UCF EECS 115

Rightmost derivation:

 <assgn>  <id> := <expr>

  <id> := <expr> + <term>

  <id> := <expr> + <term> *<factor>

  <id> := <expr> + <term> *<id>

  <id> := <expr> + <term> * a

  <id> := <expr> + <factor> * a

  <id> := <expr> + <id> * a

  <id> := <expr> + c * a

  <id> := <term> + c * a

  <id> := <factor> + c * a

  <id> := <id> + c * a

  <id> := b + c * a

  a := b + c * a

Leftmost derivation:

 <assgn>  <id> := <expr>

  a := <expr>

  a := <expr> + <term>

  a := <term> + <term>

  a := <factor> + <term>

  a := <id> + <term>

  a := b + <term>

  a := b + <term> *<factor>

  a := b + <factor> * <factor>

  a := b + <id> * <factor>

  a := b + c * <factor>

  a := b + c * <id>

  a := b + c * a

Ambiguity Test

• A Grammar is Ambiguous if there are two

distinct parse trees for some string

• Or, two distinct leftmost derivations

• Or, two distinct rightmost derivations

• Some languages are inherently ambiguous but

many are not

• Unfortunately (to be shown later) there is no

systematic test for ambiguity of context free

grammars

11/18/2014 COT 4210 © UCF 116

Unambiguous Grammar

When we encounter ambiguity, we try to rewrite the grammar to avoid

ambiguity.

The ambiguous expression grammar:

<expr>  <expr> <op> <expr> | id | int | (<expr>)

<op>  + | - | * | /

Can be rewritten as:

<expr>  <term> | <expr> + <term> | <expr> - <term>

<term>  <factor> | <term> * <factor> | <term> / <factor>.

<factor>  id | int | (<expr>)

11/18/2014 © UCF EECS 117

Parsing Problem

The parsing Problem: Take a string of symbols in a language (tokens)

and a grammar for that language to construct the parse tree or report

that the sentence is syntactically incorrect.

 For correct strings:

 Sentence + grammar  parse tree

 For a compiler, a sentence is a program:

 Program + grammar  parse tree

 Types of parsers:

 Top-down aka predictive (recursive descent parsing)

 Bottom-up aka shift-reduce

11/18/2014 © UCF EECS 118

Removing Left Recursion

Given left recursive and non left recursive rules

A  A1 | … | An | 1 | … | m

Can view as

A  (1 | … | m) (1 | … | n)*

Star notation is an extension to normal notation with

obvious meaning

Now, it should be clear this can be done right recursive as

A  1B | … | m B

B  1B| … | nB | λ

11/18/2014 © UCF EECS 119

Right Recursive Expressions

Grammar: Expr  Expr + Term | Term

 Term  Term * Factor | Factor

 Factor  (Expr) | Int

Fix: Expr  Term ExprRest

 ExprRest  + Term ExprRest | 

 Term  Factor TermRest

 TermRest  * Factor TermRest | 

 Factor  (Expr) | Int

11/18/2014 © UCF EECS 120

Bottom Up vs Top Down

• Bottom-Up: Two stack operations

– Shift (move input symbol to stack)

– Reduce (replace top of stack  with A, when A)

– Challenge is when to do shift or reduce and what reduce to do.

• Can have both kinds of conflict

• Top-Down:

– If top of stack is terminal

• If same as input, read and pop

• If not, we have an error

– If top of stack is a non-terminal A

• Replace A with some , when A

• Challenge is what A-rule to use

11/18/2014 © UCF EECS 121

Formalization of PDA

• A = (Q, Σ, Γ, δ, q0, Z0, F)

• Q is finite set of states

• Σ is finite input alphabet

• Γ is finite set of stack symbols

• δ : Q×Σe×Γe → 2Q×Γe is transition

function

• Z0 is initial symbol on stack

• F⊆Q is final set of states
11/18/2014 COT 4210 © UCF 122

Notion of ID for PDA

• An instantaneous description for a PDA is

[q, w, γ] where

– q is current state

– w is remaining input

– γ is contents of stack (leftmost symbol is top)

• Single step derivation is defined by

– [q,ax,Zα] |— [p,x,βα] if δ(q,a,Z) contains (p,β)

• Multistep derivation (|—*) is reflexive transitive

closure of single step.

11/18/2014 COT 4210 © UCF 123

Language Recognized by PDA

• Given A = (Q, Σ, Γ, δ, q0, Z0, F)

there are three senses of recognition

• By final state

L(A) = {w|[q0,w,Z0] |—* [f,λ,β]}, where f∈F

• By empty stack

N(A) = {w|[q0,w,Z0] |—* [q,λ,λ]}

• By empty stack and final state

E(A) = {w|[q0,w,Z0] |—* [f,λ,λ]}, where f∈F

11/18/2014 COT 4210 © UCF 124

Top Down Parsing by PDA

• Given G = (V, Σ, R, S), define

A = ({q}, Σ, Σ∪V, δ, q, S, ϕ)

• δ(q,a,a) = {(q,λ)} for all a ∈ Σ

• δ(q,λ,A) = {(q,α) | A → α ∈ R (guess) }

11/18/2014 COT 4210 © UCF 125

Top Down Parsing by PDA

E  E + T | T

T  T * F | F

F  (E) | Int

•δ(q,+,+)={(q,λ)}, δ(q,*,*)={(q,λ)},

•δ(q,Int,Int)={(q,λ)},

•δ(q,(,()={(q,λ)}, δ(q,),))={(q,λ)}

•δ(q,λ,E) = {(q,E+T), (q,T)}

•δ(q,λ,T) = {(q,T*F), (q,F)}

•δ(q,λ,F) = {(q,(E)), (q,Int)}

11/18/2014 COT 4210 © UCF 126

Bottom Up Parsing by PDA

• Given G = (V, Σ, R, S), define

A = ({q,f}, Σ, Σ∪V∪{$}, δ, q, $, {f})

• δ(q,a,λ) = {(q,a)} for all a ∈ Σ , SHIFT

• δ(q,λ,αR) ⊇ {(q,A)} if A → α ∈ R, REDUCE

Cheat: looking at more than top of stack

• δ(q,λ,S) ⊇ {(f,λ)}

• δ(f,λ,$) = {(f,λ)} , ACCEPT

11/18/2014 COT 4210 © UCF 127

Bottom Up Parsing by PDA

E  E + T | T

T  T * F | F

F  (E) | Int

•δ(q,+,λ)={(q,+)}, δ(q,*,λ)={(q,*)}, δ(q,Int,λ)={(q,Int)},

δ(q,(,λ)={(q,()}, δ(q,),λ)={(q,))}

•δ(q,λ,T+E) = {(q,E)}, δ(q,λ,T) ⊇ {(q,E)}

•δ(q,λ,F*T) ⊇ {(q,T)}, δ(q,λ,F) ⊇ {(q,T)}

•δ(q,λ,)E() ⊇ {(q,F)}, δ(q,λ,Int) ⊇ {(q,F)}

•δ(q,λ,E) ⊇ {(f,λ)}

•δ(q,λ,$) = {(f,λ)}

11/18/2014 COT 4210 © UCF 128

Challenge

• Use the two recognizers on some sets of

expressions like

– 5 + 7 * 2

– 5 * 7 + 2

– (5 + 7) * 2

11/18/2014 COT 4210 © UCF 129

Closure Properties

Context Free Languages

Intersection with Regular

• CFLs are closed under intersection with Regular sets

– To show this we use the equivalence of CFGs generative power with the

recognition power of PDAs.

– Let A0 = (Q0, , G, d0, q0, $, F0) be an arbitrary PDA

– Let A1 = (Q1, , d1, q1, F1) be an arbitrary DFA

– Define A2 = (Q0  Q1, , G, d2, <q0,q1> $, F0  F1) where

• d2(<q,s>, a, X) ⊇ {(<q’,s’>, )}, a{}, XG iff

d0(q, a, X) ⊇ {(q’, )} and

d1(s,a) = s’ (if a= then s’ = s).

– Using the definition of derivations we see that

 [<q0,q1>, w, $] |* [<t,s>, , ] in A2 iff

 [q0, w, $] |* [t, , ] in A0 and

 [q1, w] |* [s, ] in A1
But then wF(A2) iff tF0 and sF1 iff wF(A0) and wF(A1)

11/18/2014 COT 4210 © UCF 131

Substitution

• CFLs are closed under CFL substitution

– Let G=(V,,R,S) be a CFG.

– Let f be a substitution over  such that

• f(a) = La for a  

• Ga = (Va,a,Ra,Sa) is a CFG that produces La.

• No symbol appears in more than one of V or any Va

– Define Gf = (V aVa, aa, R’ aRa, S)

• R’ = { A  g() where A   is in R }

• g: (V)*  (V aSa)*

• g() = ; g(B) = B, B  V; g(a) = Sa, a  

• g(X) = g() g(X), || > 1, X  V

– Claim, f(L(G)) = L(Gf), and so CFLs closed under

substitution and homomorphism.
11/18/2014 COT 4210 © UCF 132

More on Substitution

• Consider G’f. If we limit derivations to the rules P’ = { A  g()

where A   is in R } and consider only sentential forms over the

aSa , then S * Sa1 Sa2 … San in G’ iff S * a1 a2 … an iff a1 a2
… an  L(G). But, then w  L(G) iff f(w)  L(Gf) and, thus, f(L(G)) =

L(Gf).

• Given that CFLs are closed under intersection, substitution,

homomorphism and intersection with regular sets, we can recast

previous proofs to show that CFLs are closed under

– Prefix, Suffix, Substring, Quotient with Regular Sets

• Later we will show that CFLs are not closed under Quotient with

CFLs.

11/18/2014 COT 4210 © UCF 133

CKY (Cocke, Kasami, Younger)

O(N3) PARSING

11/18/2014 © UCF EECS 134

Dynamic Programming

To solve a given problem, we solve small parts of the problem (subproblems),

then combine the solutions of the subproblems to reach an overall solution.

The Parsing problem for arbitrary CFGs was elusive, in that its complexity was

unknown until the late 1960s. In the meantime, theoreticians developed notion

of simplified forms that were as powerful as arbitrary CFGs. The one most

relevant here is the Chomsky Normal Form – CNF. It states that the only rule

forms needed are:

A  BC where B and C are non-terminals

A  a where a is a terminal

This is provided the string of length zero is not part of the language.

11/18/2014 © UCF EECS 135

CKY (Bottom-Up Technique)

Let the input string be a sequence of n letters a1 ... an.

Let the grammar contain r terminal and nonterminal symbols R1 ... Rr,

Let R1 be the start symbol.

Let P[n,n,r] be an array of Booleans. Initialize all elements of P to false.

For each i = 1 to n

 For each unit production Rj → ai, set P[i,1,j] = true.

 For each i = 2 to n

 For each j = 1 to n-i+1

 For each k = 1 to i-1

 For each production RA -> RB RC

 If P[j,k,B] and P[j+k,i-k,C] then set P[j,i,A] = true

If P[1,n,1] is true then a1 ... an is member of language

else a1 ... an is not member of language

11/18/2014 © UCF EECS 136

CKY Parser

 Present the CKY recognition matrix for the string abba assuming the Chomsky

Normal Form grammar, G = ({S,A,B,C,D,E}, {a,b}, R, S), specified by the rules R:

S  AB | BA

A  CD | a

B  CE | b

C  a | b

D  AC

E  BC

11/18/2014 © UCF EECS 137

a b b a

1 A,C B,C B,C A,C

2 S,D E S,E

3 B B

4 S,E

2nd CKY Example

11/18/2014 COT 4210 © UCF 138

 a  a + a  a

1 E M E P E M E

2 E, F E, F E, F

3 E E E

4 E, F E, F

5 E E

6 E, F

7 E

E  E F | M E | P E | a

F  M F | P F | M E | P E

P  +

M  

Converting a PDA to CFL

• Book has one approach; here is another

• Let A = (Q, , G, d, q0, Z, F) accept L by empty stack and final state

• Define A’ = (Q{q0’,f}, , G{$}, d’, q0’, $, {f}) where
– d’(q0’, λ, $) = {(q0, PUSH(Z)) or in normal notation {(q0, Z$)}

– d’ does what d does but only uses PUSH and POP instructions, always reading top of stack

Note1: we need to consider using the $ for cases of the original machine looking at empty

stack, when using λ for stack check. This guarantees we have top of stack until very end.

Note2: If original adds stuff to stack, we do pop, followed by a bunch of pushes.

– We add (f, λ) = (f, POP) to d’(qf, λ, $) whenever qf is in F, so we jump to a fixed final state.

• Now, wlog, we can assume our PDA uses only POP and PUSH, has just

one final state and accepts by empty stack and final state. We will assume

the original machine is of this form and that its bottom of stack is $.

• Define G = (V, , R, S) where

– V = {S}  { <q, X, p> | q,p  Q, X  G }

– R on next page

11/18/2014 COT 4210 © UCF 139

Rules for PDA to CFL

• R contains rules as follows:

S  <q0,$,f> where F = {f}

meaning: want to generate w whenever

[q0,w,$] |*[f,λ,λ]

• Remaining rules are:

<q,X,p>  a<s,Y,t><t,X,p>

whenever d(q,a,X) ⊆ {(s,PUSH(Y))}

<q,X,p>  a

whenever d(q,a,X) ⊆ {(p,POP)}

• Want <q,X,p>*w when [q,w,X] |*[p,λ,λ]

 11/18/2014 COT 4210 © UCF 140

Midterm#2 Topics

• Right-invariant equivalence relationships

– Definition of RI Equiv

– Myhill-Nerode Theorem

– Existence of minimal state machine for any

Regular Language

– Application of Pumping Lemma for Regular

languages

11/18/2014 COT 4210 © UCF 141

Midterm#2 Topics

• Right Linear Grammars

– Definition and notion of derivation

– Equivalence to finite automata

– Closure properties

• Notion of instantaneous descriptions of

machines and grammars

• Mealy and Moore Machines (automata with

output); I will not ask any Moore questions

• Closure of regular under substitution

– Use of substitution and intersection for other closures

11/18/2014 COT 4210 © UCF 142

Midterm#2 Topics

• Context free grammars

– Writing grammars for specific languages

– Leftmost and rightmost derivations, Parse trees, Ambiguity

– Closure (union, concatenation, substitution)

– Non-closure (intersection and complement)

– Pumping Lemma for CFLs

– Chomsky Normal Form

• Remove lambda rules

• Remove chain rules

• Remove non-generating (unproductive) non-terminals (and rules)

• Remove unreachable non-terminals (and rules)

• Make rhs match CNF constraints

– CKY algorithm

11/18/2014 COT 4210 © UCF 143

Midterm#2 Topics

• Push-down automata

– Various notions of acceptance and their equivalence

– Deterministic vs non-deterministic

– Equivalence to CFLs

– Top-down vs bottom up parsing

• Closure

– Intersection with regular

– Quotient with regular, Prefix, Suffix, Substring

• Non-Closure

– Intersection, complement, min, max

11/18/2014 COT 4210 © UCF 144

Computability

The study of what can/cannot be

done via purely mechanical

means

11/18/2014 COT 4210 © UCF 146

Categorizing Problems (Sets)

• Solvable or Decidable -- A problem P is said to

be solvable (decidable) if there exists an

algorithm F which, when applied to a question q

in P, produces the correct answer (“yes” or

“no”).

• Solved -- A problem P is said to solved if P is

solvable and we have produced its solution.

• Unsolved, Unsolvable (Undecidable) --

Complements of above

146

11/18/2014 COT 4210 © UCF 147

Categorizing Problems (Sets) # 2

• Recursively enumerable -- A set S is recursively
enumerable (re) if S is empty (S = Ø) or there
exists an algorithm F, over the natural numbers
, whose range is exactly S. A problem is said
to be re if the set associated with it is re.

• Semi-Decidable -- A problem is said to be semi-
decidable if there is an effective procedure F
which, when applied to a question q in P,
produces the answer “yes” if and only if q has
answer “yes”. F need not halt if q has answer
“no”.

147

11/18/2014 COT 4210 © UCF 148

Immediate Implications

• P solved implies P solvable implies P

semi-decidable (re).

• P non-re implies P unsolvable implies P

unsolved.

• P finite implies P solvable.

148

Slightly Harder Implications

• P enumerable iff P semi-decidable.

• P solvable iff both SP and (U — SP) are re

(semi-decidable).

• We will prove these later.

11/18/2014 COT 4210 © UCF 149

Hilbert’s Tenth

Diophantine Equations are

Unsolvable

 One Variable Diophantine

Equations are Solvable

11/18/2014 COT 4210 © UCF 151

Hilbert’s 10th is Semi-Decidable

• Consider over one variable: P(x) = 0

• Can semi-decide by plugging in

0, 1, -1, 2, -2, 3, -3, …

• This terminates and says “yes” if P(x)

evaluates to 0, eventually. Unfortunately, it

never terminates if there is no x such that

P(x) =0.

• Can easily extend to P(x1,x2,..,xk) = 0.

151

11/18/2014 COT 4210 © UCF 152

P(x) = 0 is Decidable

• cn x
n + cn-1 x

n-1 +… + c1 x + c0 = 0

• xn = -(cn-1 x
n-1 + … + c1 x + c0)/cn

• |xn|  cmax(|x
n-1| + … + |x| + 1|)/|cn|

• |xn|  cmax(n |xn-1|)/|cn|, since |x|1

• |x|  ncmax/|cn|

152

11/18/2014 COT 4210 © UCF 153

P(x) = 0 is Decidable

• Can bound the search to values of x in range [±
n * (cmax / cn)], where
n = highest order exponent in polynomial
cmax = largest absolute value coefficient
cn = coefficient of highest order term

• Once we have a search bound and we are
dealing with a countable set, we have an
algorithm to decide if there is an x.

• Cannot find bound when more than one
variable, so cannot extend to P(x1,x2,..,xk) = 0.

153

Turing Machines

1st Model

A Linear Memory Machine

Basic Description

• We will use a simplified form that is a variant of Post’s and Turing’s
models.

• Here, each machine is represented by a finite set of states of states
Q, the simple alphabet {0,1}, where 0 is the blank symbol, and each
state transition is defined by a 4-tuple of form

 q a X s

 where q a is the discriminant based on current state q, scanned
symbol a; X can be one of {R, L, 0, 1}, signifying move right, move
left, print 0, or print 1; and s is the new state.

• Limiting the alphabet to {0,1} is not really a limitation. We can
represent a k-letter alphabet by encoding the j-th letter via j 1’s in
succession. A 0 ends each letter, and two 0’s ends a word.

• We rarely write quads. Rather, we typically will build machines from
simple forms.

11/18/2014 COT 4210 © UCF 155

Base Machines

• R -- move right over any scanned symbol

• L -- move left over any scanned symbol

• 0 -- write a 0 in current scanned square

• 1 -- write a 1 in current scanned square

• We can then string these machines together with
optionally labeled arc.

• A labeled arc signifies a transition from one part of the
composite machine to another, if the scanned square’s
content matches the label. Unlabeled arcs are
unconditional. We will put machines together without
arcs, when the arcs are unlabeled.

11/18/2014 COT 4210 © UCF 156

Useful Composite Machines

R
1

11/18/2014 COT 4210 © UCF 157

R -- move right to next 0 (not including current square)

 …?11…10…  …?11…10…

L -- move left to next 0 (not including current square)

 …011…1?…  …011…1?…
L

1

Commentary on Machines

• These machines can be used to move
over encodings of letters or encodings of
unary based natural numbers.

• In fact, any effective computation can
easily be viewed as being over natural
numbers. We can get the negative
integers by pairing two natural numbers.
The first is the sign (0 for +, 1 for -). The
second is the magnitude.

11/18/2014 COT 4210 © UCF 158

Computing with TMs

 A reasonably standard definition of a Turing

computation of some n-ary function F is to

assume that the machine starts with a tape

containing the n inputs, x1, … , xn in the form

 …01x101x20…01xn0…

 and ends with

 …01x101x20…01xn01y0…

 where y = F(x1, … , xn).

11/18/2014 COT 4210 © UCF 159

Addition by TM

 Need the copy family of useful

submachines, where Ck copies k-th

preceding value.

 The add machine is then

 C2 C2 L 1 R L 0

11/18/2014 COT 4210 © UCF 160

1

0

R L
k R

0 R

k
k+1

1 L
k+1

1

Turing Machine Variations

• Two tracks

• N tracks

• Non-deterministic

• Two-dimensional

• K dimensional

• Two stack machines

• Two counter machines

11/18/2014 COT 4210 © UCF 161

Register Machines

2nd Model

Feels Like Assembly Language

Register Machine Concepts

• A register machine consists of a finite length program,
each of whose instructions is chosen from a small
repertoire of simple commands.

• The instructions are labeled from 1 to m, where there are
m instructions. Termination occurs as a result of an
attempt to execute the m+1-st instruction.

• The storage medium of a register machine is a finite set
of registers, each capable of storing an arbitrary natural
number.

• Any given register machine has a finite, predetermined
number of registers, independent of its input.

11/18/2014 © UCF EECS 163

© UCF EECS 164

Computing by Register Machines

• A register machine partially computing some n-
ary function F typically starts with its argument
values in the first n registers and ends with the
result in the n+1-st register.

• We extend this slightly to allow the computation
to start with values in its k+1-st through k+n-th
register, with the result appearing in the k+n+1-
th register, for any k, such that there are at least
k+n+1 registers.

• Sometimes, we use the notation of finishing with
the results in the first register, and the
arguments appearing in 2 to n+1.

11/18/2014

© UCF EECS 165

Register Instructions

• Each instruction of a register machine is of
one of two forms:

 INCr[i] –
 increment r and jump to i.

 DECr[p, z] –

 if register r > 0, decrement r and jump to p

 else jump to z

• Note, we do not use subscripts if obvious.

11/18/2014

© UCF EECS 166

Addition by RM

Addition (r3  r1 + r2)

1. DEC3[1,2] : Zero result (r3) and work (r4) registers

2. DEC4[2,3]

3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4

4. INC3[5]

5. INC4[3]

6. DEC4[7,8] : Restore r1

7. INC1[6]

8. DEC2[9,11] : Add r2 to r3, saving original r2 in r4

9. INC3[10]

10. INC4[8]

11. DEC4[12,13] : Restore r2

12. INC2[11]

13. : Halt by branching here

11/18/2014

© UCF EECS 167

Limited Subtraction by RM

Subtraction (r3  r1 - r2, if r1≥r2; 0, otherwise)

1. DEC3[1,2] : Zero result (r3) and work (r4) registers

2. DEC4[2,3]

3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4

4. INC3[5]

5. INC4[3]

6. DEC4[7,8] : Restore r1

7. INC1[6]

8. DEC2[9,11] : Subtract r2 from r3, saving original r2 in r4

9. DEC3[10,10] : Note that decrementing 0 does nothing

10. INC4[8]

11. DEC4[12,13] : Restore r2

12. INC2[11]

13. : Halt by branching here

11/18/2014

Factor Replacement

Systems

3rd Model

Deceptively Simple

© UCF EECS 169

Factor Replacement Concepts

• A factor replacement system (FRS) consists of a finite
(ordered) sequence of fractions, and some starting
natural number x.

• A fraction a/b is applicable to some natural number x,
just in case x is divisible by b. We always chose the first
applicable fraction (a/b), multiplying it times x to produce
a new natural number x*a/b. The process is then
applied to this new number.

• Termination occurs when no fraction is applicable.

• A factor replacement system partially computing n-ary
function F typically starts with its argument encoded as
powers of the first n odd primes. Thus, arguments
x1,x2,…,xn are encoded as 3x15x2…pn

xn. The result
then appears as the power of the prime 2.

11/18/2014

© UCF EECS 170

Addition by FRS

 Addition is 3x15x2 becomes 2x1+x2

 or, in more details, 203x15x2 becomes 2x1+x2 3050

 2 / 3

 2 / 5

 Note that these systems are sometimes presented as
rewriting rules of the form

 bx  ax

 meaning that a number that has can be factored as bx
can have the factor b replaced by an a.
The previous rules would then be written

 3x  2x

 5x  2x

11/18/2014

© UCF EECS 171

Limited Subtraction by FRS

 Subtraction is 3x15x2 becomes 2max(0,x1-x2)

 35x  x

 3x  2x

 5x  x

11/18/2014

© UCF EECS 172

Ordering of Rules

• The ordering of rules are immaterial for the
addition example, but are critical to the workings
of limited subtraction.

• In fact, if we ignore the order and just allow any
applicable rule to be used we get a form of non-
determinism that makes these systems
equivalent to Petri nets.

• The ordered kind are deterministic and are
equivalent to a Petri net in which the transitions
are prioritized.

11/18/2014

© UCF EECS 173

Why Deterministic?

To see why determinism makes a difference, consider

 35x  x

 3x  2x

 5x  x

Starting with 135 = 3351, deterministically we get

 135  9  6  4 = 22

Non-deterministically we get a larger, less selective set.

 135  9  6  4 = 22

 135  90  60  40  8 = 23

 135  45  3  2 = 21

 135  45  15  1 = 20

 135  45  15  5  1 = 20

 135  45  15  3  2 = 21

 135  45  9  6  4 = 22

 135  90  60  40  8 = 23

 …

This computes 2z where 0 ≤ z≤x1. Think about it.
11/18/2014

© UCF EECS 174

More on Determinism

 In general, we might get an infinite set

using non-determinism, whereas

determinism might produce a finite set. To

see this consider a system

 2x  x

 2x  4x

 starting with the number 2.

11/18/2014

Sample RM and FRS

Present a Register Machine that computes IsOdd. Assume R2=x;

at termination, set R2=1 if x is odd; 0 otherwise.

1. DEC2[2, 4]

2. DEC2[1, 3]

3. INC1[4]

4.

Present a Factor Replacement System that computes IsOdd.

Assume starting number is 3^x; at termination, result is 2=2^1 if x

is odd; 1= 2^0 otherwise.

3*3 x  x

3 x  2 x

11/18/2014 © UCF EECS 175

Sample FRS

Present a Factor Replacement System that computes IsPowerOf2.

Assume starting number is 3x 5; at termination, result is 2=21 if x is

a power of 2; 1= 20 otherwise

32*5 x  5*7 x

3*5*7 x  x

3*5 x  2 x

5*7 x  7*11 x

7*11 x  3*11 x

11 x  5 x

5 x  x

7 x  x

11/18/2014 © UCF EECS 176

© UCF EECS 177

Systems Related to FRS

• Petri Nets:
– Unordered

– Ordered

– Negated Arcs

• Vector Addition Systems:
– Unordered

– Ordered

• Factors with Residues:
– a x + c  b x + d

11/18/2014

© UCF EECS 178

Petri Net Operation

• Finite number of places, each of which can hold zero of more

markers.

• Finite number of transitions, each of which has a finite number of

input and output arcs, starting and ending, respectively, at places.

• A transition is enabled if all the nodes on its input arcs have at least

as many markers as arcs leading from them to this transition.

• Progress is made whenever at least one transition is enabled.

Among all enabled, one is chosen randomly to fire.

• Firing a transition removes one marker per arc from the incoming

nodes and adds one marker per arc to the outgoing nodes.

11/18/2014

© UCF EECS 179

Petri Net Computation

• A Petri Net starts with some finite number of markers distributed

throughout its n nodes.

• The state of the net is a vector of n natural numbers, with the i-th

component’s number indicating the contents of the i-th node. E.g.,

<0,1,4,0,6> could be the state of a Petri Net with 5 places, the 2nd,

3rd and 5th, having 1, 4, and 6 markers, resp., and the 1st and 4th

being empty.

• Computation progresses by selecting and firing enabled transitions.

Non-determinism is typical as many transitions can be

simultaneously enabled.

• Petri nets are often used to model coordination algorithms,

especially for computer networks.

11/18/2014

© UCF EECS 180

Variants of Petri Nets

• A Petri Net is not computationally complete. In fact, its halting and
word problems are decidable. However, its containment problem
(are the markings of one net contained in those of another?) is not
decidable.

• A Petri net with prioritized transitions, such that the highest priority
transitions is fired when multiple are enabled is equivalent to an
FRS. (Think about it).

• A Petri Net with negated input arcs is one where any arc with a
slash through it contributes to enabling its associated transition only
if the node is empty. These are computationally complete. They can
simulate register machines. (Think about this also).

11/18/2014

© UCF EECS 181

Petri Net Example

Marker

Place

Transition

Arc

… …

11/18/2014

© UCF EECS 182

Vector Addition

• Start with a finite set of vectors in integer n-space.

• Start with a single point with non-negative integral

coefficients.

• Can apply a vector only if the resultant point has non-

negative coefficients.

• Choose randomly among acceptable vectors.

• This generates the set of reachable points.

• Vector addition systems are equivalent to Petri Nets.

• If order vectors, these are equivalent to FRS.

11/18/2014

© UCF EECS 183

Vectors as Resource Models

• Each component of a point in n-space
represents the quantity of a particular
resource.

• The vectors represent processes that
consume and produce resources.

• The issues are safety (do we avoid bad
states) and liveness (do we attain a
desired state).

• Issues are deadlock, starvation, etc.

11/18/2014

© UCF EECS 184

Factors with Residues

• Rules are of form

– ai x + ci  bi x + di

– There are n such rules

– Can apply if number is such that you get a residue

(remainder) ci when you divide by ai

– Take quotient x and produce a new number

bi x + di

– Can apply any applicable one (no order)

• These systems are equivalent to Register

Machines.

11/18/2014

Undecidability

We Can’t Do It All

Classic Unsolvable Problem

 Given an arbitrary program P, in some language L, and

an input x to P, will P eventually stop when run with input

x?

 The above problem is called the “Halting Problem.” It is

clearly an important and practical one – wouldn't it be

nice to not be embarrassed by having your program run

“forever” when you try to do a demo for the boss or

professor? Unfortunately, there’s a fly in the ointment as

one can prove that no algorithm can be written in L that

solves the halting problem for L.

11/18/2014 186 COT 4210 © UCF

Some terminology

 We will say that a procedure, f, converges on input x if it eventually

halts when it receives x as input. We denote this as f(x).

 We will say that a procedure, f, diverges on input x if it never halts

when it receives x as input. We denote this as f(x).

 Of course, if f(x) then f defines a value for x. In fact we also say

that f(x) is defined if f(x) and undefined if f(x).

 Finally, we define the domain of f as {x | f(x)}.

The range of f is {y | there exists an x, f(x) and f(x) = y }.

11/18/2014 187 COT 4210 © UCF

11/18/2014 COT 4210 © UCF 188

Halting Problem

 Assume we can decide the halting problem. Then there exists some total
function Halt such that

 1 if [x] (y) is defined

 Halt(x,y) =

 0 if [x] (y) is not defined

 Here, we have numbered all programs and [x] refers to the x-th program in
this ordering. Now we can view Halt as a mapping from N into N by
treating its input as a single number representing the pairing of two numbers
via the one-one onto function

 pair(x,y) = <x,y> = 2x (2y + 1) – 1

 with inverses

 <z>1 = exp(z+1,1)

 <z>2 = (((z + 1) // 2 <z>1) – 1) // 2

11/18/2014 COT 4210 © UCF 189

The Contradiction

 Now if Halt exist, then so does Disagree, where
 0 if Halt(x,x) = 0, i.e, if [x] (x) is not defined

 Disagree(x) =

 my (y == y+1) if Halt(x,x) = 1, i.e, if [x] (x) is defined

 Since Disagree is a program from N into N , Disagree can be
reasoned about by Halt. Let d be such that Disagree = [d], then

 Disagree(d) is defined  Halt(d,d) = 0
  d is undefined

  Disagree(d) is undefined

 But this means that Disagree contradicts its own existence. Since
every step we took was constructive, except for the original
assumption, we must presume that the original assumption was in
error. Thus, the Halting Problem is not solvable.

Halting is recognizable

 While the Halting Problem is not solvable, it is re, recognizable or
semi-decidable.

 To see this, consider the following semi-decision procedure. Let P
be an arbitrary procedure and let x be an arbitrary natural number.
Run the procedure P on input x until it stops. If it stops, say “yes.” If
P does not stop, we will provide no answer. This semi-decides the
Halting Problem. Here is a procedural description.

 Semi_Decide_Halting() {

 Read P, x;

 P(x);

 Print “yes”;

 }

11/18/2014 190 COT 4210 © UCF

Why not just algorithms?

 A question that might come to mind is why we could not just have a
model of computation that involves only programs that halt for all
input. Assume you have such a model – our claim is that this model
must be incomplete!

 Here’s the logic. Any programming language needs to have an
associated grammar that can be used to generate all legitimate
programs. By ordering the rules of the grammar in a way that
generates programs in some lexical or syntactic order, we have a
means to recursively enumerate the set of all programs. Thus, the
set of procedures (programs) is re. using this fact, we will employ
the notation that x is the x-th procedure and x(y) is the x-th
procedure with input y. We also refer to x as the procedure’s index.

11/18/2014 191 COT 4210 © UCF

The universal machine

 First, we can all agree that any complete model of
computation must be able to simulate programs in its
own language. We refer to such a simulator (interpreter)
as the Universal machine, denote Univ. This program
gets two inputs. The first is a description of the program
to be simulated and the second of the input to that
program. Since the set of programs in a model is re, we
will assume both arguments are natural numbers; the
first being the index of the program. Thus,

 Univ(x,y) = x(y)

11/18/2014 192 COT 4210 © UCF

11/18/2014 COT 4210 © UCF 193

Non-re Problems

• There are even “practical” problems that are worse than
unsolvable -- they’re not even semi-decidable.

• The classic non-re problem is the Uniform Halting
Problem, that is, the problem to decide of an arbitrary
effective procedure P, whether or not P is an algorithm.

• Assume that the algorithms can be enumerated, and that
F accomplishes this. Then

F(x) = Fx

where F0, F1, F2, … is a list of indexes of all and only the
algorithms

11/18/2014 COT 4210 © UCF 194

The Contradiction

• Define G(x) = Univ (F(x) , x) + 1 = F(x)(x) = Fx(x) + 1

• But then G is itself an algorithm. Assume it is the g-th one

 F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since G would need to be
an algorithm.

• This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is
undefined. In fact, we already have shown how to enumerate the
(partial) recursive functions.

© UCF EECS 195

Enumeration Theorem

• Define
 Wn = { x  N | (n,x) }

• Theorem: A set B is re iff there exists an n
such that B = Wn.
Proof: Follows from definition of (n,x).

• This gives us a way to enumerate the
recursively enumerable (semi-decidable)
sets.

11/18/2014

11/18/2014 COT 4210 © UCF 196

The Set TOTAL

• The listing of all algorithms can be viewed

as

TOTAL = { f  N | x f (x) }

• We can also note that

TOTAL = { f  N | Wf = N }, where Wf is

the domain of f

• Theorem: TOTAL is not re.

Proof: Shown earlier.

Consequences

• To capture all the algorithms, any model of computation
must include some procedures that are not algorithms.

• Since the potential for non-termination is required, every
complete model must have some for form of iteration
that is potentially unbounded.

• This means that simple, well-behaved for-loops (the kind
where you can predict the number of iterations on entry
to the loop) are not sufficient. While type loops are
needed, even if implicit rather than explicit.

11/18/2014 197 COT 4210 © UCF

Insights

Non-re nature of algorithms

• No generative system (e.g., grammar) can produce

descriptions of all and only algorithms

• No parsing system (even one that rejects by

divergence) can accept all and only algorithms

• Of course, if you buy Church’s Theorem, the set of all

procedures can be generated. In fact, we can build an

algorithmic acceptor of such programs.

11/18/2014 199 COT 4210 © UCF

Many unbounded ways

• How do you achieve divergence, i.e., what are the

various means of unbounded computation in each of

our models?

• GOTO: Turing Machines and Register Machines

• Minimization: Recursive Functions

– Why not primitive recursion/iteration?

• Fixed Point: Ordered Petri Nets,

(Ordered) Factor Replacement Systems

11/18/2014 200 COT 4210 © UCF

Non-determinism

• It sometimes doesn’t matter

– Turing Machines, Finite State Automata,

Linear Bounded Automata

• It sometimes helps

– Push Down Automata

• It sometimes hinders

– Factor Replacement Systems, Petri Nets

11/18/2014 201 COT 4210 © UCF

Reducibility

11/18/2014 COT 4210 © UCF 203

Reduction Concepts

• Proofs by contradiction are tedious after you’ve

seen a few. We really would like proofs that

build on known unsolvable problems to show

other, open problems are unsolvable. The

technique commonly used is called reduction. It

starts with some known unsolvable problem and

then shows that this problem is no harder than

some open problem in which we are interested.

11/18/2014 COT 4210 © UCF 204

Reduction Example#1

• We can show that the Halting Problem is no harder than the Uniform
Halting Problem. Since we already know that the Halting Problem is
unsolvable, we would now know that the Uniform Halting Problem is
also unsolvable. We cannot reduce in the other direction since the
Uniform Halting Problem is in fact harder.

• Let F be some arbitrary effective procedure and let x be some
arbitrary natural number.

• Define Fx(y) = F(x), for all y  N

• Then Fx is an algorithm if and only if F halts on x.

• Thus a solution to the Uniform Halting Problem (TOTAL) would
provide a solution to the Halting Problem (HALT).

11/18/2014 COT 4210 © UCF 205

Reduction Examples#2&3

• In all cases below we are assuming our variables are over .

• HALT = { <f,x> | f (x) } is unsolvable (undecidable, non-recursive)

• TOTAL = { f | x f (x) } = { f | Wf =N } is not even recursively
enumerable (re, semidecidable)

• Show ZERO = { f | x f (x) = 0 } is unsolvable.
<f,x>  HALT iff g(y) = f (x) - f (x) is zero for all y.
Thus, <f,x>  HALT iff g  ZERO (really the index of g).
A solution to ZERO implies one for HALT, so ZERO is unsolvable.

• Show ZERO = { f | x f (x) = 0 } is non-re.
<f>  TOTAL iff h(x) = f (x) - f (x) is zero for all x.
Thus, f  TOTAL iff h  ZERO (really the index of h).
A semi-decision procedure for ZERO implies one for TOTAL, so
ZERO is non-re.

11/18/2014 COT 4210 © UCF 206

Assignment # 7

Known Results:

Halt = { f,x | f(x) } is re (semi-decidable) but undecidable

Total = { f | x f(x) } is non-re (not even semi-decidable)

1. Use reduction from Halt to show that one cannot decide { f | x f(x) = x } is

undecidable

2. Show that { f | x f(x) = x } reduces to Halt. (1 plus 2 show they are equally hard)

3. Use reduction from Halt to show that one cannot decide { f | x f(x+1)=2*f(x)+1}

Note that f(0) can be any value.

4. Use Reduction from Total to show that { f | x f(x+1)=2*f(x)+1} is not even re

5. Show { f | x f(x+1)=2*f(x)+1} reduces to Total. (4 plus 5 show they are equally

hard)

Due: November 18, at start of class (1:30PM).

Reduction and Equivalence

m-1, 1-1, Turing Degrees

11/18/2014 COT 4210 © UCF 208

Many-One Reduction

• Let A and B be two sets.

• We say A many-one reduces to B,
A m B, if there exists an algorithm f such that
x  A  f(x)  B

• We say that A is many-one equivalent to B,
A m B, if A m B and B m A

• Sets that are many-one equivalent are in some
sense equally hard or easy.

11/18/2014 COT 4210 © UCF 209

Many-One Degrees

• The relationship A m B is an equivalence

relationship (why?)

• If A m B, we say A and B are of the same many-
one degree (of unsolvability).

• Decidable problems occupy three m-1 degrees:
, N, all others.

• The hierarchy of undecidable m-1 degrees is an
infinite lattice (I’ll discuss in class)

11/18/2014 COT 4210 © UCF 210

One-One Reduction

• Let A and B be two sets.

• We say A one-one reduces to B, A 1 B,
if there exists a 1-1 algorithm f such that
x  A  f(x)  B

• We say that A is one-one equivalent to B,
A 1 B, if A 1 B and B 1 A

• Sets that are one-one equivalent are in a strong
sense equally hard or easy.

11/18/2014 COT 4210 © UCF 211

One-One Degrees

• The relationship A 1 B is an equivalence
relationship (why?)

• If A 1 B, we say A and B are of the same one-
one degree (of unsolvability).

• Decidable problems occupy infinitely many 1-1
degrees: each cardinality defines another 1-1
degree (think about it).

• The hierarchy of undecidable 1-1 degrees is an
infinite lattice.

11/18/2014 COT 4210 © UCF 212

Turing (Oracle) Reduction

• Let A and B be two sets.

• We say A Turing reduces to B, A t B, if the
existence of an oracle for B would provide us
with a decision procedure for A.

• We say that A is Turing equivalent to B,
A t B, if A t B and B t A

• Sets that are Turing equivalent are in a very
loose sense equally hard or easy.

11/18/2014 COT 4210 © UCF 213

Turing Degrees

• The relationship A t B is an equivalence
relationship (why?)

• If A t B, we say A and B are of the same Turing
degree (of unsolvability).

• Decidable problems occupy one Turing degree.
We really don’t even need the oracle.

• The hierarchy of undecidable Turing degrees is
an infinite lattice.

11/18/2014 COT 4210 © UCF 214

Complete re Sets

• A set C is re 1-1 (m-1, Turing) complete if, for

any re set A, A 1 (m , t) C.

• The set HALT is an re complete set (in regard to
1-1, m-1 and Turing reducibility).

• The re complete degree (in each sense of
degree) sits at the top of the lattice of re
degrees.

11/18/2014 COT 4210 © UCF 215

The Set Halt = K0

• Halt = K0 = { <f, x> | f (x) is defined }

• Let A be an arbitrary re set. By definition, there exists an

effective procedure a, such that dom(a) = A. Put
equivalently, there exists an index, a, such that A = Wa.

• x  A iff x  dom(a) iff a(x) iff <a,x>  K0

• The above provides a 1-1 function that reduces A to K0

(A 1 K0)

• Thus the universal set, Halt = K0, is an re
(1-1, m-1, Turing) complete set.

11/18/2014 COT 4210 © UCF 216

The Set K

• K = { f | f(f) is defined }

• Define fx(y) = f(x). That is, y fx(y) = f(x). Let the index
of fx be fx. (Yeah, that’s overloading.)

• <f,x>  K0 iff x  dom(f) iff y[fx
(y)] implies fx  K.

• <f,x>  K0 iff x  dom(f) iff y[fx
(y) ] implies fx  K.

• The above provides a 1-1 function that reduces K0 to K.

• Since K0 is an re (1-1, m-1, Turing) complete set and K is
re, then K is also re (1-1, m-1, Turing) complete.

Reduction and Rice’s

11/18/2014 COT 4210 © UCF 218

Either Trivial or Undecidable

• Let P be some set of re languages, e.g. P = { L | L is infinite re }.

• We call P a property of re languages since it divides the class of all
re languages into two subsets, those having property P and those
not having property P.

• P is said to be trivial if it is empty (this is not the same as saying P
contains the empty set) or contains all re languages.

• Trivial properties are not very discriminating in the way they divide
up the re languages (all or nothing).

11/18/2014 COT 4210 © UCF 219

Rice’s Theorem

 Rice’s Theorem: Let P be some non-trivial property of the re languages. Then

 LP = { x | dom [x] = dom x is in P (has property P) }

 is undecidable. Note that membership in LP is based purely on the domain of a
function, not on any aspect of its implementation.

 Proof: We will assume, wlog, that P does not contain Ø. If it does we switch our
attention to the complement of P. Now, since P is non-trivial, there exists some
language L with property P. Let [r] = r be a recursive function whose domain is L (r
is the index of a semi-decision procedure for L). Suppose P were decidable. We will
use this decision procedure and the existence of r to decide K0. First we define a
function Fr,x,y for r and each function [x] = x and input y as follows.

 Fr,x,y(z) = x(y) + r(z)

 The domain of this function is L if x(y) converges, otherwise it’s Ø. Now if we can
determine membership in LP , we can use this algorithm to decide K0 merely by
applying it to Fr,x,y. An answer as to whether or not Fr,x,y has property P is also the

correct answer as to whether or not x(y) converges.
Thus, there can be no decision procedure for P. And consequently, there can be no
decision procedure for any non-trivial property of re languages.

11/18/2014 COT 4210 © UCF 220

Rice’s Picture Proof

x

y
x(y)

r(z)

z

Let P be an arbitrary, non-trivial, I/O property of effective procedures.

Assume wlog that the functions with empty domains are not in P.

Given x, y, r, where r is in the set SP.= {f | f has property P}, define the

function fx,y,r(z) = x(y) - x(y) + r(z). The following illustrates fx,y,r.

Here, dom(fx,y,r) = dom(r) (fx,y,r(z) = r(z)) if x(y) ; =  if x(y) .

Thus, x(y) iff fx,y,r has property P, and so K0 1 SP.

dom(fx,y,r) =  If x(y)

rng(fx,y,r) =  If x(y)

rng(fx,y,r) = rng(r) If x(y)

dom(fx,y,r) = dom(r) If x(y)

11/18/2014 COT 4210 © UCF 221

Corollaries to Rice’s

 Corollary: The following properties of re

sets are undecidable

 a) L = Ø

 b) L is finite

 c) L is a regular set

 d) L is a context-free set

Recursively Enumerable

Properties of re Sets

© UCF EECS 223

Definition of re

• Some texts define re in the same way as I have defined
semi-decidable.

 S  N is semi-decidable iff there exists a partially
computable function g where

 S = { x  N | g(x) }

• I prefer the definition of re that says
S  N is re iff S =  or there exists an algorithm f where

 S = { y | x f(x) == y }

• We will prove these equivalent. Actually, f can be a
primitive recursive function. (described briefly in class)

11/18/2014

© UCF EECS 224

STP Predicate

• STP(f, x1,…,xn, t) is a predicate defined

to be true iff f(x1,…,xn) converges in at

most t steps.

• STP can be shown to be a simple

algorithm. Consider, for instance, a

universal machine (interpreter) that is told

the maximum number of step to simulate.

11/18/2014

© UCF EECS 225

Semi-Decidable Implies re

Theorem: Let S be semi-decided by GS. Assume
GS is the gS function in our enumeration of
effective procedures. If S = Ø then S is re by
definition, so we will assume wlog that there is
some a  S. Define the enumerating algorithm
FS by

 FS(<x,t>) = x * STP(gs, x, t)

 + a * (1-STP(gs, x, t))

 Note: FS is primitive recursive and it enumerates
every value in S infinitely often.

11/18/2014

© UCF EECS 226

re Implies Semi-Decidable

Theorem: By definition, S is re iff S == Ø or there
exists an algorithm FS, over the natural numbers
, whose range is exactly S. Define

 y [y == y+1], if S == Ø

 S(x) =

 y [FS(y)==x], otherwise

 This achieves our result as the domain of S is
the range of FS, or empty if S == Ø.

11/18/2014

© UCF EECS 227

Domain of a Procedure

Corollary: S is re/semi-decidable iff S is the
domain / range of a partial recursive predicate
FS.

Proof: The predicate S we defined earlier to semi-
decide S, given its enumerating function, can be
easily adapted to have this property.

 y [y == y+1], if S == Ø

 S(x) =

 x*(y [FS(y)==x]), otherwise

11/18/2014

© UCF EECS 228

Recursive Implies re

Theorem: Recursive implies re.

Proof: S is recursive implies there is an algorithm

fS such that

 S = { x  N | fs(x) == 1 }

 Define gs(x) = y (fs(x) == 1)

 Clearly

dom(gs) = {x  N | gs(x)}

 = { x  N | fs(x) == 1 }

 = S

11/18/2014

© UCF EECS 229

Related Results

Theorem: S is re iff S is semi-decidable.

Proof: That’s what we proved.

Theorem: S and ~S are both re (semi-decidable)
iff S (equivalently ~S) is recursive (decidable).

Proof: Let fS semi-decide S and fS’ semi-decide ~S. We
can decide S by gS

 gS(x) = STP(fS, x, mt (STP(fS, x, t) || STP(fS’ ,x, t))
 ~S is decided by gS’(x) = ~gS(x) = 1- gS(x).

 The other direction is immediate since, if S is decidable
then ~S is decidable (just complement gS) and hence
they are both re (semi-decidable).

11/18/2014

© UCF EECS 230

re Characterizations

Theorem: Suppose S  then the following are

equivalent:

1. S is re

2. S is the range of a primitive rec. function

3. S is the range of a recursive function

4. S is the range of a partial rec. function

5. S is the domain of a partial rec. function

11/18/2014

© UCF EECS 231

Quantification#1

• S is decidable iff there exists an algorithm cS (called S’s

characteristic function) such that

x  S  cS(x)

This is just the definition of decidable.

• S is re iff there exists an algorithm AS where

 x  S  t AS(x,t)

This is clear since, if gS is the index of a procedure S

that semi-decides S, then

 x  S  t STP(gS, x, t)

So, AS(x,t) = STPgS(x, t), where STPgS is the STP

function with its first argument fixed.
11/18/2014

© UCF EECS 232

Quantification#2

• S is re iff there exists an algorithm AS such that

 x  S  t AS(x,t)

This is clear since, if gS is the index of the procedure S that

semi-decides S, then

 x  S  ~t STP(gS, x, t)  t ~STP(gS, x, t)

So, AS(x,t) = ~STPgS(x, t), where STPgS is the STP function

with its first argument fixed.

• Note that this works even if S is recursive (decidable). The

important thing there is that if S is recursive then it may be

viewed in two normal forms, one with existential quantification

and the other with universal quantification.

• The complement of an re set is co-re. A set is recursive

(decidable) iff it is both re and co-re.

11/18/2014

© UCF EECS 233

Quantification#3

• The Uniform Halting Problem was already

shown to be non-re. It turns out its complement

is also not re. In fact, we can (but won’t) show

that TOTAL requires an alternation of

quantifiers. Specifically,

f  TOTAL  xt (STP(f, x, t))

and this is the minimum quantification we can

use, given that the quantified predicate is

recursive.

11/18/2014

11/18/2014 COT 4210 © UCF 234

Practice Assignment # 8

1. Use Rice’s Theorem to show that { f | x f(x) = 0 } is undecidable

2. Use Rice’s Theorem to show that {f | x f(x+1)=f(x)+1} is undecidable

3. Use quantification of an algorithmic predicate to estimate the

complexity (decidable, re, co-re, non-re) of each of the following, (a)-(d):

a) { f | for all input x, f(x) = f(0), that is f is a constant function }

b) { f | for two unique input values, x,y, f(x) = f(y) }

c) { <f,x> | f(x) takes at least 10 time steps before converging }

d) { <f,x> | f(x) }

4. Let sets A and B each be re non-recursive (undecidable).

Consider C = A  B. For (a)-(c), either show sets A and B with the

specified property or demonstrate that this property cannot hold.

a) Can C be recursive?

b) Can C be re non-recursive (undecidable)?

c) Can C be non-re?

Due: Tuesday, November 25, at start of class (1:30PM).

235

Sample Question#1

1. Given that the predicate STP and the

function VALUE are algorithms, show

that we can semi-decide

HZ = { f | f evaluates to 0 for some input}

Note: STP(f, x, s) is true iff f(x)

converges in s or fewer steps and, if so,

VALUE(f, x, s) = f(x).

11/18/2014 © UCF EECS

236

Sample Questions#2,3

2. Use Rice’s Theorem to show that HZ is

undecidable, where HZ is

HZ = { f | f evaluates to 0 for some input}

3. Redo using Reduction from HALT.

11/18/2014 © UCF EECS

237

Sample Question#4

4. Let P = { f |  x [STP(f, x, x)] }. Why

does Rice’s theorem not tell us anything

about the undecidability of P?

11/18/2014 © UCF EECS

238

Sample Question#5

5. Let S be an re (recursively enumerable), non-
recursive set, and T be an re, possibly
recursive set. Let

 E = { z | z = x + y, where x  S and y  T }.

 Answer with proofs, algorithms or
counterexamples, as appropriate, each of the
following questions:

 (a) Can E be non re?

 (b) Can E be re non-recursive?

 (c) Can E be recursive?

11/18/2014 © UCF EECS

Grammars

11/18/2014 COT 4210 © UCF 240

Grammars and re Sets

• Every grammar lists an re set.

• Some grammars (regular, CFL and CSG)

produce recursive sets.

• Type 0 grammars are as powerful at listing

re sets as Turing machines are at

enumerating re sets (Proof later).

11/18/2014 COT 4210 © UCF 241

Post Correspondence Problem

• Many problems related to grammars can be shown to be
no more complex than the Post Correspondence
Problem (PCP).

• Each instance of PCP is denoted: Given n>0,  a finite
alphabet, and two n-tuples of words
(x1, … , xn), (y1, … , yn) over ,
does there exist a sequence i1, … , ik , k>0, 1 ≤ ij ≤ n,
such that
xi1

 … xik
 = yi1

 … yik
 ?

• Example of PCP:
n = 3,  = { a , b }, (a b a , b b , a), (b a b , b , b a a).
Solution 2 , 3, 1 , 2
b b a a b a b b = b b a a b a b b

• In general, PCP is undecidable (no proof will be given)

PCP is undecidable

• We will not prove this here, but the essential ideas is that we can
embed computational traces in instances of PCP, such that a
solution exists if and only if the computation terminates.

• Such a construction shows that the Halting Problem is reducible to
PCP and so PCP must also be undecidable.

• As we will see PCP can often be reduced to problems about
grammars, showing those problems to also be undecidable.

11/18/2014 242 COT 4210 © UCF

11/18/2014 COT 4210 © UCF 243

Ambiguity of CFG

• Problem to determine if an arbitrary CFG
is ambiguous

S  A | B

A  xi A [i] | xi [i] 1 ≤ i ≤ n

B  yi B [i] | yi [i] 1 ≤ i ≤ n

A * xi1
 … xik

 [ik] … [i1] k > 0

B * yi1
 … yik

 [ik] … [i1] k > 0

• Ambiguous if and only if there is a solution
to this PCP instance.

11/18/2014 COT 4210 © UCF 244

Intersection of CFLs

• Problem to determine if arbitrary CFG’s
define overlapping languages

• Just take the grammar consisting of all the
A-rules from previous, and a second
grammar consisting of all the B-rules. Call
the languages generated by these
grammars, LA and LB.
LA  LB ≠ Ø, if and only there is a solution
to this PCP instance.

11/18/2014 COT 4210 © UCF 245

Non-emptiness of CSL

 S  xi S yi
R | xi T yi

R 1 ≤ i ≤ n

 a T a  * T *

 * a  a *

 a *  * a

 T  *

• Our only terminal is *. We get strings of
form *

2j+1, for some j’s if and only if there
is a solution to this PCP instance.

11/18/2014 COT 4210 © UCF 246

Traces (Valid Computations)

• A trace of a machine M, is a word of the form

X0 # X1 # X2 # X3 # … # Xk-1 # Xk #

where Xi  Xi+1 0 ≤ i < k, X0 is a starting configuration and Xk is a
terminating configuration.

• We allow some laxness, where the configurations might be encoded
in a convenient manner. For example we might use reversals on the
odd strings so the relation between each pair is context free.

• Many texts show that a context free grammar can be devised which
approximates traces by either getting the even-odd pairs right, or the
odd-even pairs right. The goal is to then to intersect the two
languages, so the result is a trace. This then allows us to create
CFLs L1 and L2, where L1  L2 ≠ Ø , just in case the machine has
an element in its domain. Since this is undecidable, the non-
emptiness of the intersection problem is also undecidable. This is an
alternate proof to one we already showed based on PCP.

One step traces

• The set of one step traces of a machine, M, is

{ X0 # X1 }

where X0  X1

• If we are considering Turing Machines, we use
{ X0 # X1

R }

where X0  X1 and X1

R is the reversal of X1

• By using the reversal we make the language no harder
than W # WR, which is a CFL.

11/18/2014 247 COT 4210 © UCF

11/18/2014 COT 4210 © UCF 248

Turing Machine Traces

• A valid trace

– C1 # C2
R $ C3 # C4

R … $ C2k-1 # C2k
R $, where

k  1 and Ci M Ci+1, for 1  i < 2k. Here, M
means derive in M, and CR means C with its
characters reversed

• An invalid trace

– C1 # C2
R $ C3 # C4

R … $ C2k-1 # C2k
R $, where

k  1 and for some i, it is false that
Ci M Ci+1.

11/18/2014 COT 4210 © UCF 249

What’s Context Free?

• Given a Turing Machine M

– The set of invalid traces of M is Context Free

– The set of valid traces is Context Sensitive

– The set of valid terminating traces is Context
Sensitive

– The complement of the valid traces is Context
Free

– The complement of the valid terminating
traces is Context Free

Partially correct traces

L1 = L(G1) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i  Y2i+1 , 0 ≤ i ≤ j.

This checks the even/odd steps of an even length computation.

But, L2 = L(G2) = {#X0#X1#X2#X3#X4 #…# X2k-1#X2k#Z0#}

where X2i-1  X2i , 1 ≤ i ≤ k.

This checks the odd/steps of an even length computation.

L = L1  L2 describes correct traces (checked even/odd and
odd/even). If Z0 is chosen to be a terminal configuration, then these
are terminating traces. If we pick a fixed X0, then X0 is a halting
configuration iff L is non-empty. This is an independent proof of the
undecidability of the non-empty intersection problem for CFGs and
the non-emptiness problem for CSGs.

11/18/2014 250 COT 4210 © UCF

11/18/2014 COT 4210 © UCF 251

What’s Undecidable?

• We cannot decide if the set of valid

terminating traces of an arbitrary machine

M is non-empty.

• We cannot decide if the complement of the

set of valid terminating traces of an

arbitrary machine M is everything. In fact,

this is not even semi-decidable.

11/18/2014 COT 4210 © UCF 252

L = *?

• If L is regular, then L = *? is decidable

– Easy – Reduce to minimal deterministic FSA,

AL accepting L. L = * iff AL is a one-state

machine, whose only state is accepting

• If L is context free, then L = *? is

undecidable

– Just produce the complement of a Turing

Machine’s valid terminating traces

Quotients of CFLs

L1 = L(G1) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i  Y2i+1 , 0 ≤ i ≤ j.

This checks the even/odd steps of an even length computation.

But, L2 = L(G2) = {X0 $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}

where X2i-1  X2i , 1 ≤ i ≤ k and Z is a unique halting configuration.

This checks the odd/steps of an even length computation, and includes an
extra copy of the starting number prior to its $.

 Now, consider the quotient of L2 / L1 . The only ways a member of L1 can
match a final substring in L2 is to line up the $ signs. But then they serve to
check out the validity and termination of the computation. Moreover, the
quotient leaves only the starting point (the one on which the machine halts.)
Thus,

 L2 / L1 = { X0 | the system halts}.

 Since deciding the members of an re set is in general undecidable, we have
shown that membership in the quotient of two CFLs is also undecidable.

11/18/2014 253 COT 4210 © UCF

11/18/2014 COT 4210 © UCF 254

Traces and Type 0

• Assume we are given some machine M, with Turing table T (using Post notation). We
assume a tape alphabet of  that includes a blank symbol B.

• Consider a starting configuration C0. Our rules will be
S  # C0 # where C0 = Yq0aX is initial ID

q a  s b if q a b s  T

b q a x  b a s x if q a R s  T, a,b,x  

b q a #  b a s B # if q a R s  T, a,b  

q a x  # a s x if q a R s  T, a,x  , a≠B

q a #  # a s B # if q a R s  T, a  , a≠B

q a x  # s x # if q a R s  T, x  , a=B

q a #  # s B # if q a R s  T, a=B

b q a x  s b a x if q a L s  T, a,b,x  

q a x  # s B a x if q a L s  T, a,x  

b q a #  s b a # if q a L s  T, a,b  , a≠B

q a #  # s B a # if q a L s  T, a  , a≠B

b q a #  s b # if q a L s  T, b  , a=B

q a #  # s B # if q a L s  T, a=B

f   if f is a final state

  just cleaning up the dirty linen

11/18/2014 COT 4210 © UCF 255

CSG and Undecidability

• We can almost do anything with a CSG that can be done with a Type 0
grammar. The only thing lacking is the ability to reduce lengths, but we can
throw in a character that we think of as meaning “deleted”. Let’s use the
letter d as a deleted character, and use the letter e to mark both ends of a
word.

• Let G = (V, T, P , S) be an arbitrary Type 0 grammar.

• Define the CSG G’ = (V  {S’, D}, T  {d, e}, S’, P’), where P’ is
S’  e S e

D x  x D when x  V  T

D e  e d push the delete characters to far right

   where     P and || ≤ ||

  Dk where     P and || - || = k > 0

• Clearly, L(G’) = { e w e dm | w  L(G) and m≥0 is some integer }

• For each w  L(G), we cannot, in general, determine for which values of m,
e w e dm  L(G’). We would need to ask a potentially infinite number of
questions of the form
“does e w e dm  L(G’)” to determine if w  L(G). That’s a semi-decision
procedure.

11/18/2014 COT 4210 © UCF 256

Some Consequences

• CSGs are not closed under Init, Final, Mid, quotient with

regular sets and homomorphism (okay for -free

homomorphism)

• We also have that the emptiness problem is undecidable

from this result. That gives us two proofs of this one

result.

• For Type 0, emptiness and even the membership

problems are undecidable.

Summary of Grammar

Results

11/18/2014 COT 4210 © UCF 258

Decidability

• Everything about regular

• Membership in CFLs and CSLs

– CKY for CFLs

• Emptiness for CFLs

11/18/2014 COT 4210 © UCF 259

Undecidability

• Is L =, for CSL, L?

• Is L=*, for CFL (CSL), L?

• Is L1=L2 for CFLs (CSLs), L1, L2?

• Is L1L2 for CFLs (CSLs), L1, L2?

• Is L1L2= for CFLs (CSLs), L1, L2?

• Is L regular, for CFL (CSL), L?

• Is L1L2 a CFL for CFLs, L1, L2?

• Is ~L CFL, for CFL, L?

11/18/2014 COT 4210 © UCF 260

More Undecidability

• Is CFL, L, ambiguous?

• Is L=L2, L a CFL?

• Does there exist a finite n, Ln=LN+1?

• Is L1/L2 finite, L1 and L2 CFLs?

• Membership in L1/L2, L1 and L2 CFLs?

Computational Complexity

Limited to Concepts of P and NP

COT6410 covers much more

P = Polynomial Time

• P is the class of decision problems containing all
those that can be solved by a deterministic
Turing machine using polynomial time in the size
of each instance of the problem.

• P contain linear programming over real
numbers, but not when the solution is
constrained to integers.

• P even contains the problem of determining if a
number is prime.

11/18/2014 COT 4210 © UCF 262

11/18/2014 COT 4210 © UCF 263

NP = Non-Det. Poly Time

• NP is the class of decision problems solvable in
polynomial time on a non-deterministic Turing machine.

• Clearly P  NP. Whether or not this is proper inclusion is
the well-known challenge P = NP?

• NP can also be described as the class of decision
problems that can be verified in polynomial time. This is
the most useful version of a definition of NP.

• NP can even be described as the class of decision
problems that can be solved in polynomial time when no
a priori bound is placed on the number of processors
that can be used in the algorithm.

11/18/2014 COT 4210 © UCF 264

NP-Complete; NP-Hard

• A decision problem, C, is NP-complete if:
– C is in NP and

– C is NP-hard. That is, every problem in NP is polynomially reducible to C.

• D polynomially reduces to C means that there is a deterministic polynomial-
time many-one algorithm, f, that transforms each instance x of D into an
instance f(x) of C, such that the answer to f(x) is YES if and only if the
answer to x is YES.

• To prove that an NP problem A is NP-complete, it is sufficient to show that
an already known NP-complete problem polynomially reduces to A. By
transitivity, this shows that A is NP-hard.

• A consequence of this definition is that if we had a polynomial time
algorithm for any NP-complete problem C, we could solve all problems in
NP in polynomial time. That is, P = NP.

• Note that NP-hard does not necessarily mean NP-complete, as a given NP-
hard problem could be outside NP.

Satisfiability

U = {u1, u2,…, un}, Boolean variables.

(CNF – Conjunctive Normal Form)

C = {c1, c2,…, cm}, conjunction(anding) of "OR clauses”

 Example clause:

 ci = (u4  u35  ~u18  u3…  ~u6)

Satisfiability

 Can we assign Boolean values to the variables in U

so that every clause is TRUE?

 There is no known polynomial algorithm!!

11/18/2014 COT 4210 © UCF 267

SAT

• SAT is the problem to decide of an arbitrary
Boolean formula (wff in the propositional
calculus) whether or not this formula is
satisfiable (has a set of variable assignments
that evaluate the expression to true).

• SAT clearly can be solved in time k2n, where k is
the length of the formula and n is the number of
variables in the formula.

• What we can show is that SAT is NP-complete,
providing us our first concrete example of an
NP-complete decision problem.

11/18/2014 COT 4210 © UCF 268

Simulating ND TM

• Given a TM, M, and an input w, we need to create a
formula, M,w, containing a polynomial number of terms
that is satisfiable just in case M accepts w in polynomial
time.

• The formula must encode within its terms a trace of
configurations that includes
– A term for the starting configuration of the TM

– Terms for all accepting configurations of the TM

– Terms that ensure the consistency of each configuration

– Terms that ensure that each configuration after the first
follows from the prior configuration by a single move

11/18/2014 COT 4210 © UCF 269

Cook’s Theorem

• M,w = cell  start  move  accept

• See the following for a detailed description

and discussion of the four terms that make

up this formula.
• http://www.cs.tau.ac.il/~safra/Complexity/Cook.ppt

NP–Complete

 Since SAT is itself in NP, that means SAT is a
hardest problem in NP (there can be more
than one.).

 As with RE problems, a hardest problem in a
class is called the "completion" of that class.

 Therefore, SAT is NP–Complete.

NP–Complete

 Within a year, Richard Karp added 22 problems to
this special class.

 These included such problems as:

 3-SAT

 3DM

 Vertex Cover,

 Independent Set,

 Knapsack,

 Multiprocessor Scheduling, and

 Partition.

SubsetSum

 S = {s1, s2, …, sn}

 set of positive integers

 and an integer B.

Question: Does S have a subset whose
values sum to B?

 No one knows of a polynomial algorithm.

 {No one has proven there isn’t one, either!!}

SubsetSum and Partition

 Theorem. SAT P 3SAT

 Theorem. 3SAT P SubsetSum

 Theorem. SubsetSum P Partition

 Theorem. Partition P SubsetSum

 Therefore, not only is Satisfiability in NP–Complete, but so is

3SAT, Partition, and SubsetSum.

SAT to 3SAT

• 3-SAT means that each clause has exactly three
terms

• If one term, e.g., (p), extend to (ppp)

• If two terms, e.g., (pq), extend to (pqp)

• Any clause with three terms is fine

• If n > three terms, can reduce to two clauses, one
with three terms and one with n-1 terms, e.g.,
(p1p2…pn) to
(p1p2z) & (p3…pn~z), where z is a new
variable. If n=4, we are done, else apply this
approach again with the clause having n-1 terms

Example SubsetSum

11/18/2014 COT 4210 © UCF 275

Assuming a 3SAT expression (a + ~b + c) (~a + b + ~c), the following

shows the reduction from 3SAT to Subset-Sum.

 a b c a + ~b + c ~a + b + ~c

a 1 1

~a 1 1

b 1 1

~b 1 1

c 1 1

~c 1 1

C1 1

C1’ 1

C2 1

C2’ 1

 1 1 1 3 3

Partition

• Partition is polynomial equivalent to SubsetSum

– Let i1, i2, .., in , G be an instance of SubsetSum. This

instance has answer “yes” iff
i1, i2, .., in , 2*Sum(i1, i2, .., in) – G,Sum(i1, i2, .., in) + G

has answer “yes” in Partition. Here we assume that

G ≤ Sum(i1, i2, .., in), for, if not, the answer is “no.”

– Let i1, i2, .., in be an instance of Partition. This instance

has answer “yes” iff
i1, i2, .., in , Sum(i1, i2, .., in)/2

has answer “yes” in SubsetSum

11/18/2014 COT 4210 © UCF 276

Integer Linear Programming

• Show for 0-1 integer linear programming by constraining

solution space. Start with an instance of SAT (or 3SAT),

assuming variables v1,…, vn and clauses c1,…, cm

• For each variable vi, have constraint that 0 ≤ vi ≤ 1

• For each clause we provide a constraint that it must be

satisfied (evaluate to at least 1). For example, if clause cj

is v2 ∨ ~v3 ∨ v5 ∨ v6 then add the constraint

v2 + (1-v3) + v5 + v6 ≥ 1

• A solution to this set of integer linear constraints implies

a solution to the instance of SAT and vice versa

11/18/2014 © UCF EECS 277

2 Processor scheduling

 The problem of optimally scheduling n tasks T1, T2, …, Tn onto 2 processors

with an empty partial order < is the same as that of dividing a set of positive

whole numbers into two subsets, such that the numbers are as close to

evenly divided. So, for example, given the numbers

 3, 2, 4, 1

 we could try a “greedy” approach as follows:

 put 3 in set 1

 put 2 in set 2

 put 4 in set 2 (total is now 6)

 put 1 in set 1 (total is now 4)

 This is not the best solution. A better option is to put 3 and 2 in one set and

4 and 1 in the other. Such a solution would have been attained if we did a

greedy solution on a sorted version of the original numbers. In general,

however, sorting doesn’t work.

11/18/2014 © UCF EECS 278

2 Processor nastiness

 Try the unsorted list

 7, 7, 6, 6, 5, 4, 4, 5, 4

 Greedy (Always in one that is least used)

 7, 6, 5, 5 = 23

 7, 6, 4, 4, 4 = 25

 Optimal

 7, 6, 6, 5 = 24

 7, 4, 4, 4, 5 = 24

 Sort it

 7, 7, 6, 6, 5, 5, 4, 4, 4

 7, 6, 5, 4, 4 = 26

 7, 6, 5, 4 = 22

 Even worse than greedy unsorted

11/18/2014 © UCF EECS 279

NP–Complete

 Today, there are 1,000's of problems that have been

proven to be NP–Complete. (See Garey and Johnson,

Computers and Intractability: A Guide to the Theory

of NP–Completeness, for a list of over 300 as of the

early 1980's).

P = NP?

 If P = NP then all problems in NP are polynomial

problems.

 If P ≠ NP then all NP–C problems are exponential.

P = NP?

Why should P equal NP?
 There seems to be a huge "gap" between the known

problems in P and Exponential. That is, almost all known
polynomial problems are no worse than n3 or n4.

 Where are the O(n50) problems?? O(n100)? Maybe they are
the ones in NP–Complete?

 It's awfully hard to envision a problem that would require
n100, but surely they exist?

 Some of the problems in NP–C just look like we should be
able to find a polynomial solution (looks can be deceiving,
though).

P ≠ NP?

Why should P not equal NP?
• P = NP would mean, for any problem in NP, that it is just

as easy to solve an instance form "scratch," as it is to
verify the answer if someone gives it to you. That seems
a bit hard to believe.

• There simply are a lot of awfully hard looking problems
in NP–Complete (and Co–NP-Complete) and some just
don't seem to be solvable in polynomial time.

• Many very smart people have tried for a long time to find
polynomial algorithms for some of the problems in NP-
Complete - with no luck.

NP-Hard

• A is NP-Hard if all NP problems polynomial
reduce to A.

• If A is NP-Hard and in NP, then A is NP-
Complete.

• QSAT (Quantified SAT) is the problem to
determine if an arbitrary fully quantified
Boolean expression is true.
Note: SAT only uses existential.

• QSAT is NP-Hard, but may not be in NP.

• QSAT can be solved in polynomial space
(PSPACE).

Co-NP

• A problem is in co-NP if its complement is in
NP – this is like co-RE, wrt RE problems.

• An example is the problem to determine if a
boolean expression is a tautology.
– You can check an instance to see if it does not

satisfy in polynomial time.

– However, just because one satisfies is not enough
to show all do. Counterexamples are easy, proofs
seem to be hard.

• The complement of satisfiability is to
determine if an expression is self
contradictory.

Final Exam Topics 1

• Regular languages

– Finite State Automata: Deterministic and Non-Deterministic

– Right Linear Grammars

– Regular Expressions

– Regular Equations

– Right invariant equivalence relations of finite index

– Equivalence of above six models

– Closures: negation, union, exclusive or, concatenation, star, intersection,

substitution, quotient, prefix, suffix, substring

– MyHill-Nerode and minimum state DFA

– Minimizing DFAs

– Classic non-regular languages {0^n 1^n | n >= 0}

– Pumping Lemma for Regular Languages

– Notion of instantaneous descriptions of machines and grammars

– Mealy and Moore Machines (automata with output)

11/18/2014 COT 4210 © UCF 286

Final Exam Topics 2

• Context free languages

– Context free grammars

• Leftmost and rightmost derivations

• Parse trees

• Ambiguity

– Closure: union, concatenation, star, substitution, intersection with regular, quotient, prefix, suffix, substring

– Non-closure: intersection, complement, quotient)

– Pumping Lemma for CFLs

– Chomsky Normal Form

• Remove non-generating non-terminals (and rules)

• Remove unreachable non-terminals (and rules)

• Remove lambda rules

• Remove chain rules

• Make right-hand sides match CNF constraints

– CKY algorithm

– Push-down automata

– Various notions of acceptance and their equivalence

– Deterministic vs non-deterministic

– Equivalence to CFLs (Proof that every PDA recognized language is a CFL is off the table)

– Top-down vs bottom up parsing

11/18/2014 COT 4210 © UCF 287

Final Exam Topics 3

• Chomsky Hierarchy

(Red involve no constructive questions)

– Regular, CFG, CSG, PSG (type 3 to type 0)

– FSAs, PDAs, LBAs, Turing machines

– Length preservation or increase makes membership

in associated languages decidable for all but PSGs

– CFLs can be inherently ambiguous but that does not

mean a language that has an ambiguous grammar is

automatically inherently ambiguous

11/18/2014 COT 4210 © UCF 288

Final Exam Topics 4

• Computability Theory

– Decision problems: solvable (decidable, recursive), semi-

decidable (recognizable, recursively enumerable/re, generable),

non-re

– If set is re and complement is also re, set is recursive (decidable)

– Halting problem (K0): diagonalization proof of undecidability

• Set K0 is re but complement is not

– Set K = { f | f(f) converges}

– Algorithms (Total): diagonalization proof of non-re

– Reducibility to show certain problems are not decidable or even

non-re

– Rice’s Theorem: All non-trivial I/O properties of functions are

undecidable

11/18/2014 COT 4210 © UCF 289

Final Exam Topics 5

• Computability Applied to Formal Grammars

(Red only results not constructions that lead to these)

– Post Correspondence problem (PCP)

• Definition

• Undecidability (proof was not done and is not part of this course)

• Application to ambiguity and non-emptiness of intersections of CFLs and to non-

emptiness of CSL

– Traces of Turing computations

• Not CFLs

• Single steps are CFLs (use reversal of second configuration)

• Intersections of pairwise correct traces are traces

• Complement of traces (including terminating traces) are CFL

• Use to show cannot decide if CFL, L, is *

• L= * and L = L2 are undecidable

– PSG can mimic TM, so generate any re language; thus, membership in PSL is

undecidable, as is emptiness of PSL.

– All re sets are homomorphic images of CSLs

11/18/2014 COT 4210 © UCF 290

Final Exam Topics 6

• Complexity Theory

– Verifiers versus solvers: P versus NP

– Definitions of NP: verify in det poly time vs solve in

non-det poly time

– Co-P and co-NP; NP-Hard versus NP-Complete

– Basic idea behind SAT as NP-Complete

– Reduction of SAT to 3-SAT to Subset-Sum

– Equivalence of Subset-Sum to Partition

– Relation of Subset-Sum, Partition

– Relation to multiprocessor scheduling

11/18/2014 COT 4210 © UCF 291

