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Who, What, Where and When 

• Instructor: Charles Hughes;  
Harris Engineering 247C; 823-2762  
(phone is not a good way to get me);  
charles.e.hughes@knights.ucf.edu 
(e-mail is a good way to get me) 
Please use Subject: COT4210  

• Web Page: http://www.cs.ucf.edu/courses/cot4210/Fall2014    

• Meetings: TR 1:30PM – 2:45PM, MSB-359;  
28 class periods, each 75 minutes long.   

 Office Hours: TR 3:15PM – 4:30PM in HEC-247C 

• GTA: Melanie Kaprocki 
<mskaprocki@knights.ucf.edu> 

• Please use Subject: COT4210  
Office Hours: TBD 
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Text Material 

• This and other material linked from web site.  

• Text: 

– Sipser, Introduction to the Theory of Computation 

3rd Ed., Course Technologies, 2013. 

• References:  

– Hopcroft, Motwani and Ullman, Introduction to 

Automata Theory, Languages and Computation 

3rd Ed., Addison-Wesley, 2006. 
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Expectations 

• Prerequisites: COT3100 (discrete structure I); 
COP3503 (undergraduate algorithm design 
and analysis)  

• Assignments: 8 to 10.  

• Exams: Two (2) midterms and a final.  

• Material: I will draw heavily from the text by 
Sipser. Some material will also come from 
Hopcroft. Class notes and in-class 
discussions are, however, comprehensive 
and cover models, closure properties and 
undecidable problems that may not be 
addressed in either of these texts. 
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Goals of Course 

• Introduce Theory of Computation, including 

– Various models of computation 

• Finite State Automata and their relation to regular expressions and regular grammars 

• Push Down Automata and their relation to context-free languages 

• Techniques for showing languages are NOT in particular language classes 

• Closure and non-closure problems 

– Limits of computation 

• Turing Machines and other equivalent models 

• Undecidable problems 

• The technique of reducibility 

• The ubiquity of undecidability 

– Complexity theory 

• Order notation (this should be a review) 

• Time complexity, the sets P and NP, and the question does P=NP? 
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Expected Outcomes 

• You will gain a solid understanding of various types of 
automata and other computational models and their 
relation to formal languages. 

• You will have a strong sense of the limits that are 
imposed by the very nature of computation, and the 
ubiquity of unsolvable problems throughout CS.  

• You will understand the notion of computational 
complexity and especially of the classes of problems 
known as P, NP and NP-complete. 

• You will come away with stronger formal proof skills and 
a better appreciation of the importance of discrete 
mathematics to all aspects of CS.  
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Keeping Up 

• I expect you to visit the course web site regularly 
(preferably daily) to see if changes have been made or 
material has been added.  

• Attendance is preferred, although I do not take roll.  

• I do, however, ask lots of questions in class and give lots 
of hints about the kinds of questions I will ask on exams. 
It would be a shame to miss the hints, or to fail to 
impress me with your insightful in-class answers. 

• You are responsible for all material covered in class, 
whether in the text or not. 
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Rules to Abide By 

• Do Your Own Work 
– When you turn in an assignment, you are implicitly telling me 

that these are the fruits of your labor. Do not copy anyone else's 
homework or let anyone else copy yours. In contrast, working 
together to understand lecture material and solutions to 
problems not posed as assignments is encouraged. 

• Late Assignments 
– I will accept no late assignments, except under very unusual 

conditions, and those exceptions must be arranged with me or 
the GTA in advance unless associated with some tragic event. 

• Exams 
– No communication during exams, except with me or a 

designated proctor, will be tolerated. A single offense will lead to 
termination of your participation in the class, and the assignment 
of a failing grade. 
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Grading 

• Grading of Assignments 

– My GTA and I will generally grade harder than our actual 

expectations run. Consequently, on most (not all) assignments, a 

grade of 90% or above will translate into a perfect grade. In 

general, I will award everyone ~111% of the grade they are 

assigned on the returned papers that are graded in this manner. 

 

• Exam Weights 

– The weights of exams will be adjusted to your personal benefits, 

as I weigh exams you do well in more than those in which you do 

less well. 
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Important Dates 

• Exam#1 – Thursday, September 25 

• Withdraw Deadline – Mon., Oct. 27 

• Exam#2 – Thursday, October 30 

• Final – Thurs., Dec. 9, 1:00AM–2:50PM  

• Days off: 11/11 (Veterans Day)  

11/27 (Thanksgiving) 

• Exam #1/#2 dates are subject to change with 

appropriate notice. Final exam is, of course, 

fixed in stone. 
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Evaluation (tentative) 

• Mid Terms – 100 points each 

• Final Exam – 150 points  

• Assignments – 100 points 

• Bonus – best exam weighed +50 points 

• Total Available: 500  

• Grading will be A ≥ 90%, A- ≥ 88%,  
B+ ≥  85%, B ≥ 80%,  B- ≥ 78%,  
C+ ≥ 75%, C ≥ 70%, C- ≥ 60%,  
D ≥ 50%, F < 50% 
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Financial Aid Related Activity 

Send an e-mail to me.  
The subject must be COT4210.  
Send it to charles.e.hughes@knights.ucf.edu 
I will use that for all class communication. 
Cc: Melanie Kaprocki <mskaprocki@knights.ucf.edu> 

In the message, tell me where and when you took 
Discrete Structures I or its equivalent. Also, tell me 
what days/times you are NOT free to make office hours. 

Do this by late Friday, 8/22. 
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Type-0

Type-1

Type-2

Type-3

Recursively Enumerable

(NDTM)

Recursive Languages

(TMs that always halt)

Context-sensitive Languages

(LBAs)

Context-free Languages

(NPDAs)

Deterministic Context-free Languages

(DPDAs)(LR(1))

Regular Languages

(DFAs = NFAs)
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Forward Pass on Formal 

Languages and Automata 
= DTM 



History 

The Quest for Mechanizing 

Mathematics 
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Hilbert, Russell and Whitehead 

• Late 1800’s to early 1900’s 

• Axiomatic schemes 

– Axioms plus sound rules of inference 

– Much of focus on number theory 

• First Order Predicate Calculus 

– xy [y > x] 

• Second Order (Peano’s Axiom) 

– P [[P(0) && x[P(x) P(x+1)]]  xP(x)] 
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Hilbert 

• In 1900 declared there were 23 really 
important problems in mathematics. 

• Belief was that the solutions to these 
would help address math’s complexity. 

• Hilbert’s Tenth asks for an algorithm to 
find the integral zeros of polynomial 
equations with integral coefficients. This is 
now known to be impossible (In 1972, 
Matiyacevič showed this undecidable). 
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Hilbert’s Belief 

• All mathematics could be developed within 

a formal system that allowed the 

mechanical creation and checking of 

proofs.  
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Gödel 

• In 1931 he showed that any first order theory 
that embeds elementary arithmetic is either 
incomplete or inconsistent. 

• He did this by showing that such a first order 
theory cannot reason about itself. That is, there 
is a first order expressible proposition that 
cannot be either proved or disproved, or the 
theory is inconsistent (some proposition and its 
complement are both provable). 

• Gödel also developed the general notion of 
recursive functions but made no claims about 
their strength. 
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Turing (Post, Church, Kleene) 

• In 1936, each presented a formalism for computability. 
– Turing and Post devised abstract machines and claimed 

these represented all mechanically computable functions. 

– Church developed the notion of lambda-computability from 
recursive functions (as previously defined by Gödel and 
Kleene) and claimed completeness for this model. 

• Kleene demonstrated the computational equivalence of 
recursively defined functions to Post-Turing machines.  

• Church’s notation was the lambda calculus, which later 
gave birth to Lisp. 
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More on Emil Post 

• In the 1920’s, starting with notation developed by Frege 
and others in 1880s, Post devised the truth table form 
we all use now for Boolean expressions (propositional 
logic). This was a part of his PhD thesis in which he 
showed the axiomatic completeness of the propositional 
calculus. 

• In the late 1930’s and the 1940’s, Post devised symbol 
manipulation systems in the form of rewriting rules 
(precursors to Chomsky’s grammars). He showed their 
equivalence to Turing machines. 

• In 1940s, Post showed the complexity (undecidability) of 
determining what is derivable from an arbitrary set of 
propositional axioms.  
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Languages 



Alphabets and Strings 

• DEFINITION 1.  An alphabet  is a finite, non-empty set 
of abstract symbols. 

• DEFINITION 2. *, the set of all strings over the 
alphabet, S, is given inductively as follows. 
– Basis:    *( the null string is denoted by , it is the string of 

length 0, that is || = 0) 
a  , a  * (the members of S are strings of length 1, |a| = 1) 

– Induction rule:  If  x  *, and a  , then  ax  * and xa  *. 
Furthermore, x = x = x, and |ax| = |xa| = 1+ |x|. 

– NOTE: “ax” denotes “a concatenated to x” and is formed by 
appending the symbol a to the left end of x.  Similarly, xa, 
denotes appending a to the right end of x.  In either case, if x is 
the null string (), then the resultant string is “a”.    
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Languages 

• DEFINITION 3.  Let  be an alphabet. A language over  is a subset, L, of 

*. 

• Example.  Languages over the alphabet  = {a, b}. 

– Ø (the empty set) is a language over  

– * (the universal set) is a language over  

– {a, bb, aba } (a finite subset of  *) is a language over . 

– { abnam | n = m2, n, m   0 } (infinite subset) is a language over . 

• DEFINITION 4.  Let L and M be two languages over .  Then the 
concatenation of L with M, denoted LM is the set, 
LM = { xy | x  L and y  M } 
The concatenation of arbitrary strings x and y is defined inductively as 
follows.  
Basis:  When |x|  1 or |y|  1, then xy is defined as in Definition 2.  
Inductive rule: when |x| > 1 and |y| > 1, then x = x  a for some a   and x’  *, 
where |x’| = |x|-1.  Then xy = x’(ay). 
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Operations on Strings 

• Let s, t be arbitrary strings over  
– s = a1 a2 … aj , j  0, where each ai   

– t = b1 b2 … bk , k  0, where each bi   

• length: |s| = j ; |t| = k  

• concatenate: = st = st =  
a1 a2 … aj b1 b2 … bk ; |st| = j+k 

• power: sn = ss … s (n times) Note: s0 =  

• reverse: sR = aj aj-1 … a1  

• substring: for s, any ap ap+1 … aq where 1pqj 
or  
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Properties of Languages 

• Let L, M and N be languages over , then: 
– ØL = LØ = Ø 

– {}L = L{} = L 

– L(M  N) = LM  LN  and (M  N) L = ML  NL 

• Concatenation does NOT distribute over intersection. 

– L0 = {}  (definition) 

– Ln+1 = LLn = LnL, n 0. (definition) 

– L+ = L1  L2  … Ln …  (definition)  

– L* = L0  L1  L2  … Ln …  (definition) = L0  L+ 

– (L*)* = L* 

– (LM)*L = L(ML)* 

– (L*  M*)* = (L*  M*)* = (L  M)* 

– (L0  L1  L2  … Ln)L* = L*, for all n . 
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Computable Languages 1 

Let’s go over some important facts to this point: 

1. * denotes the set of all strings over some finite alphabet  

2. | * | = |N|, where N is the set of natural numbers = the smallest 

infinite cardinal (the countable infinity) 

3. A language L over  is a subset of *; that is, L  P(*) = 2* –  

Here P denotes the power set constructor 

4. | L | is countable because L  * (that is, | L | ≤ | * | = |N| ) 

5. | * | < | P(*) | (uncountable infinity) implies there are an 

uncountable number of languages over a given alphabet, . 

6. A program, P, can be represented as some string over a finite 

alphabet, P; that is, P  *, and thus there are at most a countably 

infinite number of programs over P. 
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Computable Languages 2 

7. A programming language, LP, is an element of P(P*) ; | LP | is 
countable. 

8. Each program, P, defines a function, FP: I*  O*  

9. FP defines an input language PI and an output language PO. 

10. Since there are a countable number of programs, P, there can be at most 
a countable number of functions FP and consequently, only a countable 
number of distinct input languages and output languages associated with 
programs in LP.  Thus, there are only a countable number of languages 
(input or output) that can be defined by any program, P. 

11. But, there are an uncountable number of possible languages over any 
given alphabet – see 3 and 5. 

12. Thus there must be languages over a given alphabet that have no 
description – in terms of a program – or in terms of an algorithm.  Thus 
there are only a countably infinite number of languages that are 
computable among the uncountable number of possible languages. 
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Sets, Sequences, Relations, 

Functions and Infinity 

Mostly compliments of Dr. 

Workman 



Sets 

• Sets are unordered collections of distinct objects. 

• Sets can be defined or specified in many ways: 
– By explicitly enumerating their members or elements 

e.g.  S = { a, b, c} 
Note: If S' = { b, c, a}, then S and S' denote the same set (that 
is, S' = S) 

– By specifying a condition for membership 
S =  { x    |  P(x) }, reads "S is the set of all x in  such that 
P(x) is true" 
P is called a "predicate" ( a function from set   to {true, false} ) 
E.g.  S = { x  UCF | x is a CS major } 

• The empty set is denoted, Ø, and is the set with no 
members; that is, 
 Ø = { }.  Also, the predicate, x  Ø, is always false! 
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More on Sets 

• If S  Ø, then there exists an x for which x  S is true; this predicate is read 

"x is an element of S" or "x is a member of S".  The symbol  "" denotes the 

member relation. x  S is true when x is not in S.  

• We use normal set operation of union (A  B), intersection (A  B) and 

complement ~A (usually A with a bar on it). 

• If  A and B are sets,  then we write "A  B" to mean that A is a subset of B.  

This means that for all x  A, x  B.  Or, x [x  A  x  B]. 

• The expression, "A  B" means that A is a proper subset of B. 

Mathematically, x [x  A  x  B] and y [ y  B and y A] 

Note the text uses the subset notation with a line through the lower bar, but 

that symbol is not available in my fonts. 

• The cross (Cartesian) product of two sets A and B is denoted, A  B, and is 

the set defined as follows: A  B = { (a,b) |  a  A and b  B } .  "(a,b)" is an 

expression composed from elements, a,b, selected arbitrarily from sets A 

and B, respectively.  If A  B, then A  B  B  A. 

Note: (a,b) is a sequence not a set. See next slide. 
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Sequences 

• While sets have no order and no repeated elements, 
sequences have order and can contain repeats at 
differing positions in the order. 
– The set {5,2,5} = {5,2} = {2,5} 

– The sequence (5,2,5)  (5,2)  (2,5) 

• Actually, there is a notion of a multiset or bag that we 
sometimes use. It has no order, but repeated elements 
are allowed. Since position is irrelevant, we just record 
each unique elements with a count. 

• We can talk about the k-th element of a sequence, but 
not of a set or multiset. 

• Finite sequences are often called tuples. Those of length 
k are k-tuples. A 2-tuple is also called a pair. 
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Relations 

• A relation, r, is a mapping from some set A to 

some set B; 

We write,  r: A  B, and we mean that r assigns to every 

member of A a subset of B; that is, for every a  A,  

r(a)  B and r(a)  Ø.  

A relation, r, can also be defined in terms of the cross 

product of A and B:  

r  A  B such that for every a  A there is b  B such 

that (a, b)  r. 

• We say that a relation, r, from A to B is a partial relation if 

and only if for some a  A,  r(a) = Ø = { }.   
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Relations 

• A relation can be graphed as illustrated by the 

example below. 

11/18/2014 COT 4210 © UCF 33 

Example: 

Let A = { a, b, c} ,  B = { 0, 1, 2 },  

and r = { (a,0), (a,2), (b,1), (c,0) } 

r(a) = { 0, 2 } 

r(b) = { 1 } 

r(c) = { 0 } 

B 

A 
a         b        c 

2 

 

1 

 

0 

Graph of relation, r 



Functions 
• Functions are special types of relations.  Specifically, a relation 

f: A B, is said to be a (total) function from A to B if and only if, 
for every a  A, f(a) has exactly one element;  that is, |f(a)| = 1. 

• If f is a partial function from A to B, then f may not be defined for every a  A.  
In this case we write |f(a)|  1, for every a in A; note that |f(a)| = 0 if and only if 
f(a) = Ø, and we say the function is undefined at a.  
Note: Text calls the set of possible inputs a function’s domain. We will often 
use domain for the set of input values on which f is defined, referring to the 
input set as the universe of discourse. If a function is total (defined 
everywhere) then there is no terminology difference. 

• A function, f, is said to be one-to-one (1-1) if and only if x  y implies 
f(x)  f(y). A total function that is one-to-one is sometimes called an injection. 

• A function, f: A B, is said to be onto if and only if for every y  B there is an 
x  A such that y = f(x).   
Note: technically we should write {y} = f(x), since functions are relations, 
however, the more convenient and less baroque notation is used when 
dealing with functions.  Total functions that are onto are called surjections. 
Ones that are 1-1 and onto are called bijections. 

11/18/2014 COT 4210 © UCF 34 



Ordinal and Cardinal Numbers 

Definition.  Ordinal numbers are symbols used to designate relative 
position in an ordered collection.  The ordinals correspond to the 
natural numbers: 0, 1, 2, … The set of all natural (ordinal) numbers 
is denoted, N. (Note: Here we include 0 as a natural number.) 

A fundamental concept in set theory is the size of a set, S.   We begin 
with a definition. 

Definition.  Let S be any set.  We associate with S, the unique symbol 
|S| called its cardinality. Symbols of this kind are called cardinal 
numbers and denote the size of the set with which they are 
associated. 
|Ø| = 0   (the cardinal number defining the size of the empty set is 
the ordinal, 0) 
If S = {0, 1, 2, 3, …, n-1}, for some natural number n>0, then |S|=n. 
To summarize, the cardinality of any finite set (including the empty 
set) is simply the ordinal number that specifies the number of 
elements in that set. 
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More on Cardinality 

To determine the relative size of two sets, we need the following 

definitions: 

Definition. If A and B are two sets, then |A|  |B| if and only if there 

exists an injection, f, from A to B; f is a 1-1 function from A into B. 

Definition. If A and B are two sets, then |A| = |B| if and only if |A|  |B| 

and |B|  |A|. We may also say that |A| = |B| if and only if there is a 

bijection, f, from A to B; f is a 1-1 function from A onto B. 

Definition. If A and B are two sets, then |A| < |B| if and only if |A|  |B| 

and |A|  |B|. 

 

Definition. A set S is said to be finite if and only if |S|  N; otherwise, S 

is said to be infinite. A set S is said to be countable if and only if S is 

finite or |S| = | N |; otherwise S is said to be uncountable. 
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Infinities 

By the definitions above, there are many infinite 

sets with which you are familiar. 

For example: 

N (the set of Natural numbers), Z (the set of 

Integers), Z+ (the set of Positive Integers), Q (the 

set of Rational numbers) and R (the set of Real 

numbers). 

But, are all these infinite sets the same size??  

Brash statement: |N| = |Z+| = |Z| = |Q| < |R|. 
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Cantor and Infinities 

The previous “brash” statement suggests there are at least two infinite 
cardinals, |N| and |R|.  Furthermore, |N| is a countable cardinal and  
|R| is an uncountable cardinal.  In fact there are infinitely many 
distinct cardinal numbers representing infinite sets! 

In addition to these facts, Cantor proved that there is a smallest infinite 
cardinal number. He designated this smallest infinite cardinal 
number, 0 , named “aleph-null”; aleph is a symbol in the Hebrew 
alphabet.  He further showed that given any cardinal number, k , 

there is a next smallest cardinal number, k+1. 
Cantor was able to prove that |N| = 0, and although many 

mathematicians believe that 1 = |R|, this has never been proven 
from the axioms of mathematical set theory. 
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Power Set 
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Definition.  Let S be a set, then the power set of S, denoted 
P(S) or 2S, is defined by 

 P(S) = { A |  A  S }. 

 

Examples. 
P(Ø)           = {Ø}, 

P( {1,2,3} ) = {Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} 

P(N) = {Ø, {0}, {1}, {2}, {3}, … 

                     , {0,1}, {0,2}, {0,3}, … 

                     , {0,1,2}, … 

                  … N } 



How Many Infinities? 

• The theorem stated and proven next is due to Cantor 
and gives us a mechanism for defining two sets of 
distinctly different cardinality (one being strictly larger 
than the other).  By inductively applying Cantor’s 
theorem it follows that there are infinitely many cardinal 
numbers denoting the sizes of infinite sets.  Cantor’s 
theorem uses the power set of a given set. 
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Cantor’s Theorem 
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Theorem (Cantor).  Let S be any set.  Then |S| < |P(S)|. 

Proof.   
Case1:  Suppose S = Ø. Then P(S) = {Ø}. Since |S| = 0 and |P(S)| = 1, the result holds. 

Case2:  Assume S  Ø.  
(a)  First we show that |S|  |P(S)|. 

To show this we must find an injection, f, from S to P(S).   

Consider f(x) = {x}.  Clearly, f(x)  P(S) for all x S.  

Furthermore, if x  y, then f(x) = {x}  {y} = f(y).  
Thus f is the desired function and we may conclude that |S|  |P(S)|. 

(b) Next we wish to show |S| |P(S)|.  We do this by contradiction. 

Assume |S| = |P(S)|, then by definition of equality of cardinal numbers, there is a 

function, f, that is 1-1 and onto from S to P(S). 

Define Z = { x  S | x  f(x) }. Clearly, Z is a subset (possibly empty) of S. 

Therefore there is a y  S such that f(y) = Z.  This follows from our assumption that f 
is onto P(S).  Then either y  Z or y  Z. 

(b.1)  Suppose y  Z , then by definition of Z, y  f(y) = Z; a contradiction. 

(b.2)  Suppose y  Z, then by definition of Z, y  f(y) = Z; a contradiction. 

Since the existence of f led to this logical absurdity, we must conclude that f cannot 
exist and thus |S| = |P(S)| is false. This establishes (b). 

             (a) and (b) together imply |S| < |P(S)|. 

 



Corollaries 

• If |S| = |N|, then |P(S)| > |N| = 0 . 

 

• There are sets whose cardinalities are greater than 
0. These sets are uncountably infinite, whereas 
those that correspond to N are countably infinite.  

• Note that a set can be countable and yet there is no 
effective way to describe its correspondence with N. 
Look back and you will see that the definition just 
says that an injective function exists, not that this 
function is actually computable. 
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Cardinalities of Z and Q 

1. We show that | N | = | Z |. 

| N |  | Z |: Define g: N  Z as follows: g(i) = i  

| Z |  | N |: Define  f: Z N as follows:  

 

 

 

 

2. To show | N | = | Q | we develop the proof in two steps: 

(a) Lemma – prove that |A|  |S| for every subset A of S. 

  Note: This is what we did for | N |  | Z |  

 (b) Prove that | N  N | = | N |.  
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x= 0 1 -1 2 -2 

f(x)= 0 1 2 3 4 

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
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





0  x if ,2x  -
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)(xf



|Subset|  |Parent Set| 

Lemma A.  |A|  |S|, for every subset A of S. 

 

Proof.  Let A be a subset of S.  To establish that |A|  |S| 

we need to find a 1-1 function from A into S.  The identity 

function, f(x) = x, is the desired function; clearly, if x  y, 

then f(x) = x  y = f(y).  Since, f(x)  S, for every x in A, 

the lemma is proved. 
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| N  N | = | N | 
Lemma B.  | N  N | = | N |.  

Proof. Let S = N  N = {(k,j) | k,j  N}.  Define the function, f((k,j)) = ((k+j)(k+j+1))/2 + j. 

Clearly f is a function, since the defining expression is single-valued. 

 Furthermore,  k,j  N, f((k,j))  0. We have to show that f is 1-1 and onto N. 

To show f is 1-1, let (k, j) and (k', j') be two distinct elements of S.    

There are two cases to consider.  (a) k+j = k'+j', or (b) k+j < k'+j' (or k'+j' < k+j). 

 Assume (a). Then f((k,j)) – f((k',j')) = j – j' (we can assume without loss of generality 

that j-j'  0). If j-j' = 0, then j = j'.  Thus k+j = k'+j' implies k = k', but this contradicts our 

assumption that (k,j) and (k',j') are distinct elements of S.  Thus we must assume that 

j-j' > 0.  It follows immediately that f((k,j))  f((k',j'). 

 Assume (b).  Then we can assume k+j < k'+j' = k+j+a, for some a > 0. Now suppose 

f(k',j')) = f((k,j)).  Substituting k+j+a for k'+j' in the formula for f((k',j')) and equating to 

f((k,j)), and doing the algebra we arrive at j = aj + y, where y is some positive number. 

Clearly this relation cannot hold for any non-negative j and a > 0.  We must conclude 

that f((k,j))  f((k',j'). Thus f is 1-1. 

  To show that f is onto N, we need to show that given any m  0, there is a (k,j) such 

that f((k,j)) = m.  Let x be the largest non-negative integer such that x(x+1)/2   m.  It 

follows that (x+1)(x+2)/2 > m.  Now choose j = m - x(x+1)/2 and k = x-j.   It follows that 

f((k,j)) = m. 
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Proof That | N | = | Q | 

By definition, Q = { (a,b) | a  Z and b  Z+ }  
 
| Q |  | N |.  
  Q  Z  N.  Thus | Q |   | Z  N | by Lemma A.   

But | Z  N | = | N  N | using an argument similar to that 
showing | Z | = | N |. (Define g by g(a,b) = (f(a),b)) where f 
is the function used to map Z to N.) 
By Lemma B it follows that | Q |  | N |.   

| N |  | Q |. 
 Define f(a) = (a,1). This is a 1-1 mapping from N into Q, 

showing | Q |  | N |.  
 
Thus, | N | = | Q |. 
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Assignment # 1 

1. Prove or disprove that, for sets A and B,  
A=B if and only if (A  ~ B)  (A  B) = A. 

2. Prove that, for Boolean (T/F) variables P and Q, 
((P  Q)  Q)  (P  Q)  
 is logical or;  is logical implication;  is logical equivalence  

3. Prove: If S is any finite set with |S| = n, then  
|SSSSS | ≤ |P(S)|, for all nN, where N is some constant, the 
minimum value of which you must discover and use as the basis 
for your proof. 

4. Consider the function pair: N  N  N  
defined by pair(x,y) = 2x ( 2y + 1) – 1  
Show that pair is a bijection (1-1 onto N).  
Note that I already showed this is a surjection in the Sample, so 
your assignment is to show it is an injection (1-1), not just onto. 

Due: Thursday, 8/28, at start of class (1:30PM) 
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Computability 

The study of what can/cannot be 

done via purely mechanical 

means 



Basic Definitions 

The Preliminaries 
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Effective Procedure 

• A process whose execution is clearly specified to the 
smallest detail 

• Such procedures have, among other properties, the 
following: 
– Processes must be finitely describable and the language used to 

describe them must be over a finite alphabet. 

– The current state of the machine model must be finitely 
presentable. 

– Given the current state, the choice of actions (steps) to move to 
the next state must be easily determinable from the procedure’s 
description. 

– Each action (step) of the process must be capable of being 
carried out in a finite amount of time. 

– The semantics associated with each step must be clear and 
unambiguous. 
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Algorithm 

• An effective procedure that halts on all 

input 

• The key term here is “halts on all input” 

• By contrast, an effective procedure may 

halt on all, none or some of its input. 

• The domain of an algorithm is its entire 

domain of possible inputs. 
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Sets, Problems & Predicates 

• Set -- A collection of atoms from some 

universe U.  Ø denotes the empty set. 

• (Decision) Problem -- A set of questions, 

each of which has answer “yes” or “no”. 

• Predicate -- A mapping from some 

universe U into the Boolean set {true, 

false}.  A predicate need not be defined for 

all values in U. 
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How They relate 

• Let S be an arbitrary subset of some universe U.  The 
predicate cS over U may be defined by: 

  cS(x) = true  if and only if  x  S 

  cS is called the characteristic function of S. 

• Let K be some arbitrary predicate defined over some 
universe U.  The problem PK associated with K is the 
problem to decide of an arbitrary member x of U, 
whether or not K(x) is true. 

• Let P be an arbitrary decision problem and let U denote 
the set of questions in P (usually just the set over which 
a single variable part of the questions ranges).  The set 
SP associated with P is 

  { x | x  U and x has answer “yes” in P } 
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Categorizing Problems (Sets) 

• Solvable or Decidable -- A problem P is said to 

be solvable (decidable) if there exists an 

algorithm F which, when applied to a question q 

in P, produces the correct answer (“yes” or 

“no”). 

• Solved -- A problem P is said to solved if P is 

solvable and we have produced its solution. 

• Unsolved, Unsolvable (Undecidable) -- 

Complements of above 
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Existence of Undecidables 

• A counting argument 
– The number of mappings from  to  is at least as 

great as the number of subsets of . But the number 
of subsets of  is uncountably infinite (1). However, 
the number of programs in any model of computation 
is countably infinite (0). This latter statement is a 
consequence of the fact that the descriptions must be 
finite and they must be written in a language with a 
finite alphabet. In fact, not only is the number of 
programs countable, it is also effectively enumerable; 
moreover, its membership is decidable.  

• A diagonalization argument 
– Will be shown later in class 
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Categorizing Problems (Sets) # 2 

• Recursively enumerable -- A set S is recursively 
enumerable (re) if S is empty (S = Ø) or there 
exists an algorithm F, over the natural numbers 
, whose range is exactly S.  A problem is said 
to be re if the set associated with it is re. 

• Semi-Decidable -- A problem is said to be semi-
decidable if there is an effective procedure F 
which, when applied to a question q in P, 
produces the answer “yes” if and only if q has 
answer “yes”.  F need not halt if q has answer 
“no”. 
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Goals of Computability 

• Provide precise characterizations (computational 
models) of the class of effective procedures / algorithms. 

• Study the boundaries between complete and incomplete 
models of computation. 

• Study the properties of classes of solvable and 
unsolvable problems. 

• Solve or prove unsolvable open problems. 

• Determine reducibility and equivalence relations among 
unsolvable problems. 

• Our added goal is apply these techniques and results 
across Computer Science. 
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p is irrational 

Prove, if p is a prime number, then p is irrational.  
Hint: Look at Theorem 0.24 in Sipser. 

Assume p is a rational number. Let q/r be the reduced fraction (no 
common prime factors) that equals p. 
p  =  q/r : assumption 
r p = q  : multiply both sides by r 
r2p  =  q2 : square both sides 
Since r and q have no common prime factors, then p must be a prime 
factor of q, so 
r2p  =  (kp)2  : for some positive integer k  
r2  =  k2p  : divide both sides by p 
Since r and q have no common prime factors, r and k have no common 
prime factor and so p must be a prime factor of r. But then q/r is not 
reduced as both q and r have the common prime factor p. This 
contradicts our original assumption that is p rational, so it is irrational. 
QED 
 

 

 



Assignment # 2 

1. Let L be a language over {a,b} where every string is of 
even length and is of the form WX, where |W|=|X| but 
W≠X. Design and present an algorithm that recognized 
strings in L using no unbounded amount of storage (no 
stacks, no queues). This means that any memory 
required must be of a fixed size independent of the 
length of an input string. Note: You cannot play the 
game of using unbounded recursion, as each call 
consumes stack space. 

2. Present a language L over  = {a} where L4 = L5 but  
L ≠ L2 and L2 ≠ L3 and L3 ≠ L4  
Note: Lk = { x1x2…xk | x1,x2,…,xk  L } 
 

Due: Thursday, September 4, at start of class (1:30PM) 
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Complexity 



Complexity vs .. 

• Complexity seeks to categorize problems 
as easy (polynomial) or hard (exponential 
or even worse). Some parts focus on time; 
others on space. 

• Computability seeks to categorize problem 
as algorithmically solvable or not. 

• Algorithm Design & Analysis tries to find 
the fastest possible data structures and 
algorithms to solve problems. 
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P and NP 

• P is the set (class) of problems solvable in 
polynomial time using a computer with a 
fixed number of processors. 

• NP is the set of problems solvable in 
polynomial time using a finite but 
unbounded number of processors. 

• Note: P vs NP also means deterministic 
versus non-deterministic polynomial time. 

• Big question: Is P = NP? 
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Regular Languages 

Outline 
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Regular Languages # 1 

• Finite Automata 

• Moore and Mealy models: Automata with output.  

• Regular operations 

• Non-determinism: Its use. Conversion to 
deterministic FSAs. Formal proof of equivalence. 

• Lambda moves: Lambda closure of a state  

• Regular expressions 

• Equivalence of REs and FSAs. 

• Pumping Lemma: Proof and applications.  
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Regular Languages # 2 

• Regular equations: REQs and FSAs. 

• Myhill-Nerode Theorem: Right invariant 
equivalence relations. Specific relation for a 
language L. Proof and applications. 

• Minimization: Why it's unique. Process of 
minimization. Analysis of cost of different 
approaches.  

• Regular (right linear) grammars, regular 
languages and their equivalence to FSA 
languages.  
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Regular Languages # 3 

• Closure properties: Union, concat, *, 
complement, reversal, intersection, set 
difference, substitution, homomorphism and 
inverse homomorphism, INIT, LAST, MID, 
EXTERIOR, quotient (with regular set, with 
arbitrary set).  

• Algorithms for reachable states and states that 
can reach a point.  

• Decision properties: Emptiness, finiteness, 

equivalence.  
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FSA and Sequential Circuits 

• A synchronous sequential circuit has 

– Binary input lines (input admitted at clock tick) 

– Binary output lines (simple case is one line) 

• 1 accepts; 0 rejects input 

– Internal flip flops (memory) that defines state 

– Simple combinatorial circuits (and, or, not) 

that combine state and input to alter state 

– Simple combinatorial circuits (and, or, not) 

that use state to determine output 
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FSAs and Pattern Matching 

• Will do some in class 

• Think about FSA to recognize the string 

PAPAPAT appearing somewhere in a 

corpus of text, say with a substring 

PAPAPAPATRICK 
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Lexical Analysis 

• Consider distinguishing variable names 

from keywords like IF, THEN, ELSE, etc. 

• This really screams for non-determinism 

• Non deterministic automat typically have 

fewer states 

• However, non-deterministic FSA 

interpretation is not as fast as deterministic 
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Game Behaviors 

• Consider adding actions and weights on 
transitions 

• Input to FSA enables some (possibility no) 
transitions from current state 

• Each weight is a probability that a transition is 
fired if more than one is enabled 

• Actions are initiated during transition 

• Have an FSA per object, with communication 
occurring between FSAs and from environment, 
e.g., game controllers, trackers, etc. 
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11/18/2014 

Assignment # 3 

1. Present a transition diagram for a NFA that recognizes the set of binary 
strings that starts with a 1 and, when interpreted as entering the DFA 
most to least significant digit, each represents a binary number that is 
divisible by either five or six. Thus, 101, 110, 1100, 1111 are in the 
language, but 111, 1011 and 11010 are not. 
OR 
Present a DFA that recognizes such binary strings that represent a 
number that is either 5 Mod 6 or 0 Mod 6.  

2. a.) Present a transition diagram for an NFA for the language associated 
with the regular expression (1001 + 110 + 11)*. Your NFA must have no 
more than five states.  
b.) Use the standard conversion technique (subsets of states) to convert 
the NFA from (a) to an equivalent DFA. Be sure to not include 
unreachable states. Hint: This DFA should have no more than six states. 

3. Using DFA’s (not any equivalent notation) show that the Regular 
Languages are closed under Min, where  
Min(L) = { w | w  L, but no proper prefix of w is in L}.. This means that w 
 Min(L) iff w  L and for no y≠λ is x in L, where w=xy. Said a third way, 
w is not an extension of any element in L. 

Due: Thursday, September 11, at start of class (1:30PM) 
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Regular Expressions 

• Primitive: 

– Φ denotes {} 

– λ  denotes {λ}  

– a where a is in Σ denotes {a} 

• Closure: 

– If R and S are regular expressions then so are R ° S, R + S and 

R*, where 

• R ° S denotes RS = { xy | x is in R and y is in S } 

• R + S denotes RS = { x | x is in R or x is in S } 

• R* denotes R* 

• Parentheses are used as needed 
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Regular Languages = 

Finite State Languages 
• Show every regular expression denotes a 

language recognized by a finite state 

automaton (can do deterministic or non-

deterministic) 

• Show every Finite State Automata 

recognizes a language denoted by a 

regular expression 
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Regular Equations 

• Assume that R, Q and P are sets such that P 

does not contain the string of length zero, and R 

is defined by 

• R = Q + RP 

• We wish to show that 

• R = QP* 
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Show QP* is a Solution 

• We first show that QP* is contained in R. By 

definition, R = Q + RP. 

• To see if QP* is a solution, we insert it as the 

value of R in Q + RP and see if the equation 

balances 

• R = Q + QP*P = Q(λ+P*P) = QP* 

• Hence QP* is a solution, but not necessarily the 

only solution. 
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Uniqueness of Solution 

• To prove uniqueness, we show that R is contained in QP*.  

• By definition, R = Q+RP = Q+(Q+RP)P  

• = Q+QP+RP2 = Q+QP+(Q+RP)P2  

• = Q+QP+QP2+RP3  

• ...  

• = Q(λ+P+P2+ ... +Pi)+RPi+1, for all i>=0 

• Choose any W in R, where |W| = k. Then, from above, 

• R = Q(λ+P+P2+ ... +Pk)+RPk+1 

• but, since P does not contain the string of length zero, W is not in 

RPk+1. But then W is in 

• Q(λ+P+P2+ ... +Pk) and hence W is in QP*. 
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Example 

• We use the above to solve simultaneous regular 

equations. For example, we can associate regular 

expressions with finite state automata as follows  

 

• Hence, 

• A = B10* + 0* 

• B = B10*1 + B0 + 0*1   

 

• and therefore 

• B = 0*1(10*1 + 0)*   

• Note: This technique fails if there are lambda transitions. 
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Convert from NFA to DFA 
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Minimize States 

11/18/2014 COT 4210 © UCF 79 



Convert to RE 
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q2 q3 q1 

0 

1 1 

0, 1 

0 1 



q2 q3 q1 

0 

1 
1 

0, 1 

0 
1 

• R11
0=   R12

0= 0    R13
0=  

• R21
0= 0  R22

0=  + 1  R23
0= 0 + 1 

• R31
0=    R32

0= 1   R33
0=  + 1 

• R11
1=   R12

1= 0    R13
1=  

• R21
1= 0  R22

1=  + 1 + 00  R23
1= 0 + 1 

• R31
1 =    R32

1= 1   R33
1=  + 1 

• R11
2=  + 01*0  R12

2= 0(1+00)*  R13
2= 0(1+00)*(0+1) 

• R21
2=  (1+00)*0 R22

2= (1+00)*  R23
2= (1+00)*(0+1) 

• R31
2=  1(1+00)*(0+1)  R32

2= 1(1+00)*  R33
2= +1+1(1+00)*(0+1) 

• L = R12
3=  

0(1+00)* + 0(1+00)*(0+1) (1+1(1+00)*(0+1))* 1(1+00)* 
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Use Ripping; Rip q3 
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q2 q3 q1 

0 

1 1 

0+1 

0 1 

qf 

 

 

q0 

q2 q1 

0 

0 1+(0+1)1+ 

qf 

 

 

q0 



Use Ripping; Rip q1 
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q2 q1 

0 

0 1+(0+1)1+ 

qf 

 

 

q0 

q2 

0 

1+(0+1)1++00 

qf 

 

q0 



Use Ripping; Rip q2 
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q2 

0 

1+(0+1)1++00 

qf 

 

q0 

0 (1+(0+1)1++00)* 

qf 

 

q0 

L = 0 (1+(0+1)1++00)* = 0 (1+(0+1)1++00)*   



Use Regular Equations 
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B C A 

0 

1 1 

0, 1 

0 1 

A =  + B0 

B = A0 + C1 + B1 

C = B(0+1) + C1; C = B(0+1)1* 

B = 0 + B00 + B(0+1)1+ + B1 

B = 0 + B (00+(0+1) 1+ + 1); B = 0(00 +(0+1)1+ + 1)* 

 

This is same form as with state ripping. It won’t always be so. 



Pumping Lemma Problems 

• Use the Pumping Lemma to show each of 

the following is not regular 

– { 0m 12n | m  n } 

– { wwR | w  {a,b}+ } 

– { 1n2
 | n > 0 } 

– { ww | w  {a,b}+ } 
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NFAs 

• Write NFAs for each of the following 

– ( 111 + 000 )+ 

– (0+1)* 101 (0+1)+ 

– (1 (0+1)* 0) + (0 (0+1)* 1) 
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Convert NFA to DFA 

• Convert each NFA you just created to an 

equivalent DFA. 
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DFAs to REs 

• For each of the DFAs you created for the 

previous page, use ripping of states and 

then regular equations to compute the 

associated regular expression. Note: You 

obviously ought to get expressions that 

are equivalent to the initial expressions 

from two pages ago. 
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11/18/2014 

Assignment # 4 

COT 4210 © UCF 90 90 COT 4210 © UCF 

1. Convert the following NFA to an equivalent DFA. 
 

 

 
 

 

 

    

 

 

2. Convert the DFA you developed in #1 to a regular expression, first by using either 
the GNFA (or state ripping) or Rij(k) approach, and then by using regular 
equations. You must show all steps in each part of this assignment. 

 
 
  
  

 Due: Thursday, September 18, at start of class (1:30PM). 



What is Regular So Far? 

• Any language accepted by a DFA 

• Any language accepted by an NFA 

• Any language specified by a Regular 

Expression 

• Any language representing the unique 

solution to a set of properly constrained 

regular equations 
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What More is Regular? 

• Any language generated by a right linear 

grammar 

• Any language generated by a left linear 

grammar 

• Any language that is the union of some of 

the classes of a right invariant equivalence 

relation of finite index 
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What is NOT Regular? 

• Well, I suppose anything for which you 

cannot write an accepting DFA or NFA, or 

a defining regular expression, or a right/left 

linear grammar, or a set of regular 

equations, but that’s not a very useful 

statement 

• There are two tools we have: 

– Pumping Lemma for Regular Lnaguges 

– Myhill-Nerode Theorem 
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Pumping Lemma For Regular 

• L is regular iff there exists an N>0 such 

that, if w  L and |w| ≥ N, then w can be 

written in the form xyz, where |xy| ≤ N,  

|y|>0, and for all i≥0, xyiz  L. 

• This means that interesting regular 

languages (infinite ones) have a very 

simple self-embedding property. 
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Pumping Lemma Proof 

• If L is regular then it is recognized by some DFA, A=(Q,,d,q0,F). Let |Q| = N 

states. For any string w, such that |w| ≥ N, A must make N+1 state visits to 

consume its first N characters, followed by |w|-N more state visits.  

• In its first N+1 state visits, A must enter at least one state two or more times. 

• Let w = v1…vi…vj…vm, where m =|w|, and d(q0,v1…vi)=d(q0,v1…vj), j>I, and 

this state representing the first one repeated while A consumes w. 

• Define x = v1…vi, y = vi+1…vj, and z = vj+1…vm. Clearly w=xyz. Moreover, 

since j > i, |y| > 0, and since j ≤ N, |xy| ≤ N. 

• Since A is deterministic, d(q0,xy)=d(q0,xyi), for all i≥0. 

• Thus, if w  L, d(q0,xyz)  F, and so d(q0,xyiz)  F, for all i≥0.  

• Consequently, if w  L, |w|≥N, then w can be written in the form xyz, where  

|xy| ≤ N, |y|>0, and for all i≥0, xyiz  L. 
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Lemma’s Adversarial Process 

• Assume L = {anbn | n>0 } is regular 

• P.L.: Provides N>0 

– We CANNOT choose N; that’s the P.L.’s job 

• Our turn: Choose aNbN  L 

– We get to select a string in L 

• P.L.: aNbN = xyz, where |xy| ≤ N, |y|>0, and for all i≥0, xyiz  L 

– We CANNOT choose split, but P.L. is constrained by N 

• Our turn: Choose i=0. 

– We have the power here 

• P.L: aN-|y|bN  L; just a consequence of P.L. 

• Our turn: aN-|y|bN  L; just a consequence of L’s structure 

• CONTRADICTION, so L is NOT regular 
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xwx is not Regular (PL) 

• L = { x w x | x,w∈{a,b}+} :  

• Assume that L is Regular. 

• PL:    Let N>0 be given by the Pumping Lemma. 

• YOU: Let s be a string, s ∈ L, such that s = aNbaaNb 

• PL:    Since s ∈ L and |s| ≥ N, s can be split into 3 pieces, s = xyz, such that 

|xy| ≤ N and |y| > 0 and ∀ i ≥ 0 xyiz ∈ L 

• YOU: Choose i = 2 

• PL:    xy2z = xyyz ∈ L (could also use i = 0) 

• Thus, aN + |y|baaNb would be in L, this is not so since N+|y| ≠ N and we 

cannot merge other a since must have |w|>0 

• We have arrived at a contradiction. 

• Therefore L is not Regular. 
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Myhill-Nerode Theorem 

The following are equivalent: 

1.L is accepted by some DFA. 

2.L is the union of some of the classes of a right invariant 

equivalence relation, R, of finite index. 

3.The specific right invariance equivalence relation  

RL where x RL y iff z [ xz  L iff yz  L ] 

has finite index 

Definition. R is a right invariant equivalence relation iff R is 

an equivalence relation and z [ x R y implies xz R yz ]. 

Note: This is only meaningful for relations over strings. 
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Use of Myhill-Nerode 

• L = {anbn | n>0 } is NOT regular.  

• Assume otherwise. 

• M-N says that the specific r.i. equiv. relation RL has finite 

index, where x RL y iff  z [ xz  L iff yz  L ]. 

• Consider the equivalence classes [aib] and [ajb], where 

i,j>0 and i ≠ j. 

• aibbi-1  L  but  ajbbi-1  L and so [aib] is not related to 

[ajb] under RL and thus [aib] ≠ [ajb]. 

• This means that RL has infinite index. 

• Therefore L is not regular. 
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xwx is not Regular (MN) 

• L = { x w x | x,w∈{a,b}+} : 

• Assume that L is Regular. 

• We consider the right invariant equivalence class [ajb]. 

• It’s clear that ajbaajb is in the language, but ajbaakb is 

not when k < j.  

• This shows that there is a separate equivalence class, 

[ajb], induced by RL, for each j>0. Thus, the index of RL is 

infinite and Myhill‐Nerode states that L cannot be 

Regular. 
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Finite State Transducers 

• A transducer is a machine with output 

• Mealy Model 

– M = (Q, , G, d, g, q0) 

G is the finite output alphabet 

g: Q ×   G is the output function 

– Essentially a Mealy Model machine produced a character of 

output for each character of input it consumes, and it does so on 

the transitions from one state to the next. 

– A Mealy Model represents a synchronous circuit whose output is 

triggered each time a new input arrives. 
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Finite State Transducers 

• Moore Model 

– M = (Q, , G, d, g, q0) 

G is the finite output alphabet 

g: Q  G is the output function 

– Essentially a Moore Model machine produced a 

character of output whenever it enters a state, 

independent of how it arrived at that state. 

– A Moore Model represents an asynchronous circuit 

whose output is a steady state until new input arrives. 
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11/18/2014 

Assignment # 5 

1. For each of the following, prove it is not regular by using the Pumping Lemma or 
Myhill-Nerode. You must do at least two of these using the Pumping Lemma and at 
least two using Myhill-Nerode. 

a. { aFib(k) | k>0 } This is set {a1, a1, a2, a3, a5, a8, a13, a21, … } 

b. { aibjck | i≥0, j≥0, k≥0, k = min(i,j) } 

c. { aibjck | i≥0, j≥0, k≥0, j = i * k } 

d. { aibjck | i≥0, j≥0, k≥0, if i=1 then j>k } 

e. { w | w  {a, b}* and w = wR } this is the set of palindromes. It contains strings like aa, 
abba, abaaba 

 

2. Write a Mealy finite state machine that produces the 2’s complement result of 
subtracting 1101 from a binary input stream (assuming at least 4 bits of input) 

 

3. Write a regular (right linear) grammar that generates the set of strings denoted by the 
regular expression ((10)+ (011 + 1)+)* (0+101)* 

 

Due: Thursday, October 9, at start of class (1:30PM). 
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History of Formal Language 

• In 1940s, Emil Post (mathematician) devised rewriting systems as a 

way to describe how mathematicians do proofs. Purpose was to 

mechanize them. 

• Early 1950s, Noam Chomsky (linguist) developed a hierarchy of 

rewriting systems (grammars) to describe natural languages. 

• Late 1950s, Backus-Naur (computer scientists) devised BNF (a 

variant of Chomsky’s context-free grammars) to describe the 

programming language Algol. 

• 1960s was the time of many advances in parsing. In particular, 

parsing of context free was shown to be no worse than O(n3). More 

importantly, useful subsets were found that could be parsed in O(n). 
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Formalism for Grammars 

Definition : A language is a set of strings of characters from some alphabet. 

The strings of the language are called sentences or statements. 

A string over some alphabet is a finite sequence of symbols drawn  from that 

alphabet. 

A meta-language is a language that is used to describe another language. 

A very well known meta-language is BNF (Backus Naur Form) 

It was developed by John Backus and Peter Naur, in the late 50s, to describe 

programming languages. 

Noam Chomsky in the early 50s developed context free grammars which can 

be expressed using BNF. 
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Grammars 

• G = (V, Σ, R, S) where 

– V: Finite set of non-terminal symbols 

– Σ: Finite set of terminal symbols 

– R: finite set of rules of form α  β,  

• α in (V  Σ)* V (V  Σ)* 

• β in (V  Σ)* 

– S: a member of V called the start symbol 

• Right linear restricts all rules to be of forms 

– α in V 

– β of form ΣV, Σ or λ 
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Derivations 

• x  y reads as x derives y iff 

– x = γαδ, y = γβδ and α  β  

• * is the reflexive, transitive closure of  

• + is the transitive closure of  

• x * y iff x = y or x * z and z  y 

• Or, x * y iff x = y or x  z and z * y 

• L(G) = { w | S * w } is the language 

generated by G. 
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Context Free Grammars 

G = (V, , R, S) where 

V is a finite set of symbols called the non-terminals or variables 

(sometimes denoted N). They are not part of the language generated 

by the grammar. 

 is a finite set of symbols, disjoint from V, called the terminals. Strings 

in the language are made up entirely of terminal symbols. 

S is a member of V and is called the start symbol. 

R is a finite set of rules or productions. Each member of R is one the 

form 

A   where  is a strings (V)* 

 Note that the left hand side of a rule is a letter in V; 

 The right hand side is a string from the combined alphabets 

 The right hand side can even be empty ( or λ)  
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Interesting Sample CFG 

Example of a grammar for a small language:  

G = ({<program>, <stmt-list>, <stmt>, <expression>},  

        {begin, end, ident, ;, =, +, -}, R, <program>) where R is 

 <program>  begin <stmt-list> end 

 <stmt-list>  <stmt> | <stmt> ; <stmt-list> 

 <stmt>   ident = <expression> 

 <expression>   ident + ident | ident - ident | ident  

Here “ident” is a token return from a scanner, as are  “begin”, “end”, “;”, “=”, 

“+”, “-” 

Note that “;” is a separator (Pascal style) not a terminator (C style). 
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Derivation 
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A sentence generation is called a derivation. 

 

Grammar for a simple  

assignment statement: 

 

R1  <assgn>  <id> := <expr> 

R2  <id>          a | b | c 

R3  <expr>     <id> + <expr> 

R4          |   <id> * <expr> 

R5          |   ( <expr> ) 

R6                   | <id> 

The statement a := b * ( a + c )  

Is generated by the leftmost derivation: 

 

<assgn>  <id> := <expr>       R1 

    a := <expr>        R2 

    a := <id> * <expr>       R4 

   a := b * <expr>       R2 

   a := b * ( <expr> )               R5 

   a := b * ( <id> + <expr> )   R3 

   a := b * ( a + <expr> )       R2 

   a := b * ( a + <id> )       R6 

   a := b * ( a + c )       R2 In a leftmost derivation only the 

leftmost non-terminal is replaced 



Parse Trees 
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A parse tree is a graphical representation of a derivation 

For instance the parse tree for the statement  a := b * ( a + c )  is: 

 

   <assign> 

 

 

        <id>              :=  <expr> 

 

 

           a        <id>        *  <expr> 

 

 

           b         ( <expr>            ) 

 

            

          <id>       +          <expr> 

 

 

             a     <id> 

 

 

              c 

  

Every internal node of a 

parse tree is labeled with 

a non-terminal symbol. 

 

Every leaf is labeled with a  

terminal symbol. 

 

The generated string is read  

left to right 



Ambiguity 

A grammar that generates a sentence for which there are two or more  

distinct parse trees is said to be “ambiguous” 

 

For instance, the following grammar is ambiguous because it generates  

distinct  parse trees for the expression a := b + c * a 

 

  <assgn>  <id> := <expr> 

  <id>     a | b | c 

  <expr>     <expr> + <expr> 

      |   <expr> * <expr> 

      |   ( <expr> ) 

                   | <id> 
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Ambiguous Parse 
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This grammar generates two parse trees  for the same expression. 

 

If a language structure has more than one parse tree,  

the meaning of the structure cannot be determined uniquely.   

            <assign> 

 

 

     <id>   :=            <expr> 

 

 

        A               <expr>      +           <expr> 

 

 

        <id>     <expr>     *      <expr> 

 

 

          B       <id>        <id> 

 

 

          C          A 

            <assign> 

 

 

     <id>   :=             <expr> 

 

 

        A               <expr>        *            <expr> 

 

 

           <expr>       +      <expr>             <id> 

 

 

              <id>                  <id> A 

 

 

                 B                      C 



Precedence 
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Operator precedence: 
If an operator is generated lower in the parse tree, it indicates that the  

operator has precedence over the operator generated higher up in the tree. 

 

An unambiguous grammar for expressions: 

 

 <assign>  <id> := <expr> 

  <id>     a | b | c 

  <expr>     <expr> + <term> 

      |  <term>  

  <term>     <term> * <factor> 

      |   <factor> 

  <factor>    ( <expr> ) 

                    | <id> 

 
  

This grammar indicates the usual  

precedence order of multiplication and  

addition operators. 

 

This grammar generates unique parse 

trees independently of doing a  

rightmost or leftmost derivation  

 

  



Left (right)most Derivations 
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Rightmost derivation: 

 <assgn>   <id> := <expr>         

    <id> := <expr> + <term>   

    <id> := <expr> + <term> *<factor>  

   <id> := <expr> + <term> *<id>          

   <id> := <expr> + <term> *  a    

   <id> := <expr> + <factor> *  a 

   <id> := <expr> + <id> *  a 

   <id> := <expr> + c  *  a  

   <id> := <term> + c  *  a  

   <id> := <factor> + c  *  a  

   <id> := <id> + c  *  a  

    <id> :=  b + c  * a 

   a := b +   c  *  a 

Leftmost derivation: 

 <assgn>  <id> := <expr>         

    a := <expr>          

    a := <expr> + <term>         

   a := <term> + <term>         

   a := <factor> + <term> 

   a := <id> + <term> 

   a := b + <term>     

   a := b + <term> *<factor>        

   a := b + <factor> * <factor> 

   a := b + <id> * <factor> 

    a := b +   c  * <factor> 

   a := b +   c  * <id> 

   a := b +   c  *   a       



Ambiguity Test 

• A Grammar is Ambiguous if there are two 

distinct parse trees for some string 

• Or, two distinct leftmost derivations  

• Or, two distinct rightmost derivations 

• Some languages are inherently ambiguous but 

many are not 

• Unfortunately (to be shown later) there is no 

systematic test for ambiguity of context free 

grammars 
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Unambiguous Grammar 

When we encounter ambiguity, we try to rewrite the grammar to avoid 

ambiguity. 

 

The ambiguous expression grammar: 

 

<expr>  <expr> <op> <expr> | id | int | (<expr>) 

<op>     + | - | * | / 

 

Can be rewritten as: 

 

<expr>  <term> | <expr> + <term> | <expr> - <term> 

<term>  <factor> | <term> * <factor> | <term> / <factor>. 

<factor>  id | int | (<expr>) 
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Parsing Problem 

The parsing Problem: Take a string of symbols in a language (tokens) 

and a grammar for that language to construct the parse tree or report 

that the sentence is syntactically incorrect. 

 For correct strings: 

 Sentence + grammar  parse tree 

 For a compiler,  a sentence is a program: 

 Program + grammar  parse tree 

 Types of parsers: 

 Top-down aka predictive (recursive descent parsing) 

 Bottom-up aka shift-reduce 
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Removing Left Recursion 

Given left recursive and non left recursive rules 

A  A1 | … | An | 1 | … | m    

Can view as  

A  (1 | … | m) (1 | … | n )* 

Star notation is an extension to normal notation with 

obvious meaning 

Now, it should be clear this can be done right recursive as 

A  1B | … | m B 

B  1B| … | nB | λ 
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Right Recursive Expressions 

Grammar: Expr  Expr + Term | Term 

     Term  Term * Factor | Factor 

     Factor  (Expr) | Int 

 

Fix:           Expr  Term ExprRest 

     ExprRest  + Term ExprRest |   

     Term  Factor TermRest 

     TermRest  * Factor TermRest |   

     Factor  (Expr) | Int 
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Bottom Up vs Top Down 

• Bottom-Up: Two stack operations 

– Shift (move input symbol to stack) 

– Reduce (replace top of stack  with A, when A) 

– Challenge is when to do shift or reduce and what reduce to do. 

• Can have both kinds of conflict 

• Top-Down:   

– If top of stack is terminal 

• If same as input, read and pop 

• If not, we have an error 

– If top of stack is a non-terminal A 

• Replace A with some , when A 

• Challenge is what A-rule to use 
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Formalization of PDA 

• A = (Q, Σ, Γ, δ, q0, Z0, F) 

• Q is finite set of states 

• Σ is finite input alphabet 

• Γ is finite set of stack symbols 

• δ : Q×Σe×Γe → 2Q×Γe is transition 

function 

• Z0 is initial symbol on stack 

• F⊆Q is final set of states 
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Notion of ID for PDA 

• An instantaneous description for a PDA is 

[q, w, γ] where  

– q is current state 

– w is remaining input  

– γ is contents of stack (leftmost symbol is top)  

• Single step derivation is defined by 

– [q,ax,Zα] |— [p,x,βα] if δ(q,a,Z) contains (p,β) 

• Multistep derivation (|—*) is reflexive transitive 

closure of single step. 
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Language Recognized by PDA 

• Given A = (Q, Σ, Γ, δ, q0, Z0, F) 

there are three senses of recognition 

• By final state  

L(A) = {w|[q0,w,Z0] |—* [f,λ,β]}, where f∈F 

• By empty stack 

N(A) = {w|[q0,w,Z0] |—* [q,λ,λ]}  

• By empty stack and final state  

E(A) = {w|[q0,w,Z0] |—* [f,λ,λ]}, where f∈F 
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Top Down Parsing by PDA 

• Given G = (V, Σ, R, S), define  

A = ({q}, Σ, Σ∪V, δ, q, S, ϕ) 

• δ(q,a,a) = {(q,λ)} for all a ∈ Σ 

• δ(q,λ,A) = {(q,α) |  A → α ∈ R (guess) } 
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Top Down Parsing by PDA 

E  E + T | T 

T  T * F | F  

F  (E) | Int  

•δ(q,+,+)={(q,λ)}, δ(q,*,*)={(q,λ)}, 

•δ(q,Int,Int)={(q,λ)}, 

•δ(q,(,()={(q,λ)}, δ(q,),))={(q,λ)}  

•δ(q,λ,E) = {(q,E+T), (q,T)} 

•δ(q,λ,T) = {(q,T*F), (q,F)} 

•δ(q,λ,F) = {(q,(E)), (q,Int)} 
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Bottom Up Parsing by PDA 

• Given G = (V, Σ, R, S), define  

A = ({q,f}, Σ, Σ∪V∪{$}, δ, q, $, {f}) 

• δ(q,a,λ) = {(q,a)} for all a ∈ Σ , SHIFT 

• δ(q,λ,αR) ⊇ {(q,A)} if A → α ∈ R, REDUCE 

Cheat: looking at more than top of stack 

• δ(q,λ,S) ⊇ {(f,λ)} 

• δ(f,λ,$) = {(f,λ)}   , ACCEPT 
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Bottom Up Parsing by PDA 

E  E + T | T 

T  T * F | F  

F  (E) | Int  

•δ(q,+,λ)={(q,+)}, δ(q,*,λ)={(q,*)}, δ(q,Int,λ)={(q,Int)}, 

δ(q,(,λ)={(q,()}, δ(q,),λ)={(q,))}   

•δ(q,λ,T+E) = {(q,E)}, δ(q,λ,T) ⊇ {(q,E)} 

•δ(q,λ,F*T) ⊇ {(q,T)}, δ(q,λ,F) ⊇ {(q,T)} 

•δ(q,λ,)E() ⊇ {(q,F)}, δ(q,λ,Int) ⊇ {(q,F)} 

•δ(q,λ,E) ⊇ {(f,λ)} 

•δ(q,λ,$) = {(f,λ)} 
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Challenge 

• Use the two recognizers on some sets of 

expressions like 

– 5 + 7 * 2 

– 5 * 7 + 2 

– (5 + 7) * 2 
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Closure Properties 

Context Free Languages 



Intersection with Regular 

• CFLs are closed under intersection with Regular sets 

– To show this we use the equivalence of CFGs generative power with the 

recognition power of PDAs. 

– Let A0 = ( Q0, , G, d0, q0, $, F0) be an arbitrary PDA 

– Let A1 = ( Q1, , d1, q1, F1) be an arbitrary DFA 

– Define A2 = ( Q0  Q1, , G, d2, <q0,q1> $, F0  F1) where 

• d2(<q,s>, a, X) ⊇ {(<q’,s’>, )}, a{}, XG iff  

d0(q, a, X) ⊇ {(q’, )} and  

d1(s,a) = s’ (if a= then s’ = s). 

– Using the definition of derivations we see that 

  [<q0,q1>, w, $] |*  [<t,s>, , ] in A2 iff  

  [q0, w, $] |*  [t, , ] in A0 and 

  [q1, w] |*  [s, ] in A1  
But then wF(A2) iff tF0 and sF1 iff wF(A0) and wF(A1) 
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Substitution 

• CFLs are closed under CFL substitution 

– Let G=(V,,R,S) be a CFG. 

– Let f be a substitution over  such that 

• f(a) = La for a   

• Ga = (Va,a,Ra,Sa) is a CFG that produces La. 

• No symbol appears in more than one of V or any Va 

– Define Gf = (V aVa, aa, R’ aRa, S) 

• R’ = { A  g() where A   is in R } 

• g: (V)*  (V aSa )* 

• g() = ; g(B) = B, B  V; g(a) = Sa, a    

• g(X) = g() g(X), || > 1, X  V 

– Claim, f(L(G)) = L(Gf), and so CFLs closed under 

substitution and homomorphism. 
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More on Substitution 

• Consider G’f. If we limit derivations to the rules P’ = { A  g() 

where A   is in R } and consider only sentential forms over  the 

aSa , then S * Sa1 Sa2 … San in G’ iff S * a1 a2 … an iff a1 a2 
… an  L(G). But, then w  L(G) iff f(w)  L(Gf) and, thus, f(L(G)) = 

L(Gf).  

 

• Given that CFLs are closed under intersection, substitution, 

homomorphism and intersection with regular sets, we can recast 

previous proofs to show that CFLs are closed under 

– Prefix, Suffix, Substring, Quotient with Regular Sets 

 

• Later we will show that CFLs are not closed under Quotient with 

CFLs. 
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CKY (Cocke, Kasami, Younger) 

O(N3) PARSING 

11/18/2014 © UCF EECS 134 



Dynamic Programming 

To solve a given problem, we solve small parts of the problem (subproblems), 

then combine the solutions of the subproblems to reach an overall solution. 

 

The Parsing problem for arbitrary CFGs was elusive, in that its complexity was 

unknown until the late 1960s. In the meantime, theoreticians developed notion 

of simplified forms that were as powerful as arbitrary CFGs. The one most 

relevant here is the Chomsky Normal Form – CNF. It states that the only rule 

forms needed are: 

 

A   BC  where B and C are non-terminals 

A  a  where a is a terminal 

 

This is provided the string of length zero is not part of the language. 
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CKY (Bottom-Up Technique) 

Let the input string be a sequence of n letters a1 ... an.  

Let the grammar contain r terminal and nonterminal symbols R1 ... Rr,  

Let R1 be the start symbol.  

Let P[n,n,r] be an array of Booleans. Initialize all elements of P to false.  

For each i = 1 to n  

 For each unit production Rj → ai, set P[i,1,j] = true.  

 For each i = 2 to n 

  For each j = 1 to n-i+1  

   For each k = 1 to i-1  

    For each production RA -> RB RC  

     If P[j,k,B] and P[j+k,i-k,C] then set P[j,i,A] = true  

If P[1,n,1] is true then a1 ... an is member of language  

else a1 ... an is not member of language  
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CKY Parser 

 Present the CKY recognition matrix for the string  abba  assuming the Chomsky 

Normal Form grammar, G = ({S,A,B,C,D,E}, {a,b}, R, S), specified by the rules R: 

S   AB  |  BA 

A   CD  |  a 

B    CE  |  b  

C    a      |  b 

D   AC 

E    BC  
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a b b a 

1 A,C B,C B,C A,C 

2 S,D E S,E 

3 B B 

4 S,E 



2nd CKY Example 
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  a  a + a  a 

1 E M E P E M E 

2   E, F   E, F   E, F 
  

3 E   E   E     

4   E, F   E, F       

5 E   E         

6   E, F           

7 E             

E   E F  | M E | P E | a  

F   M F | P F | M E | P E 

P    +  

M      
 



Converting a PDA to CFL 

• Book has one approach; here is another 

• Let A = ( Q, , G, d, q0, Z, F) accept L by empty stack and final state 

• Define A’ = (Q{q0’,f}, , G{$}, d’, q0’, $, {f}) where 
– d’(q0’, λ, $) = {(q0, PUSH(Z)) or in normal notation {(q0, Z$)} 

– d’ does what d does but only uses PUSH and POP instructions, always reading top of stack 

Note1: we need to consider using the $ for cases of the original machine looking at empty 

stack, when using λ for stack check. This guarantees we have top of stack until very end. 

Note2: If original adds stuff to stack, we do pop, followed by a bunch of pushes. 

– We add (f, λ) = (f, POP) to d’(qf, λ, $) whenever qf is in F, so we jump to a fixed final state. 

• Now, wlog, we can assume our PDA uses only POP and PUSH, has just 

one final state and accepts by empty stack and final state. We will assume 

the original machine is of this form and that its bottom of stack is $. 

• Define G = (V, , R, S) where 

– V = {S}  { <q, X, p> | q,p  Q, X  G } 

– R on next page 
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Rules for PDA to CFL 

• R contains rules as follows: 

S  <q0,$,f> where F = {f} 

meaning: want to generate w whenever  

[q0,w,$] |*[f,λ,λ] 

• Remaining rules are: 

<q,X,p>  a<s,Y,t><t,X,p> 

whenever d(q,a,X) ⊆ {(s,PUSH(Y))} 

<q,X,p>  a 

whenever d(q,a,X) ⊆ {(p,POP)} 

• Want <q,X,p>*w when [q,w,X] |*[p,λ,λ] 
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Midterm#2 Topics 

• Right-invariant equivalence relationships 

– Definition of RI Equiv  

– Myhill-Nerode Theorem  

– Existence of minimal state machine for any 

Regular Language 

– Application of Pumping Lemma for Regular 

languages 
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Midterm#2 Topics 

• Right Linear Grammars 

– Definition and notion of derivation 

– Equivalence to finite automata 

– Closure properties  

• Notion of instantaneous descriptions of 

machines and grammars 

• Mealy and Moore Machines (automata with 

output); I will not ask any Moore questions 

• Closure of regular under substitution 

– Use of substitution and intersection for other closures 

 
11/18/2014 COT 4210 © UCF 142 



Midterm#2 Topics 

• Context free grammars 

– Writing grammars for specific languages 

– Leftmost and rightmost derivations, Parse trees, Ambiguity 

– Closure (union, concatenation, substitution) 

– Non-closure (intersection and complement) 

– Pumping Lemma for CFLs 

– Chomsky Normal Form 

• Remove lambda rules 

• Remove chain rules 

• Remove non-generating (unproductive) non-terminals (and rules) 

• Remove unreachable non-terminals (and rules) 

• Make rhs match CNF constraints 

– CKY algorithm 

11/18/2014 COT 4210 © UCF 143 



Midterm#2 Topics 

• Push-down automata 

– Various notions of acceptance and their equivalence 

– Deterministic vs non-deterministic 

– Equivalence to CFLs 

– Top-down vs bottom up parsing 

• Closure 

– Intersection with regular 

– Quotient with regular, Prefix, Suffix, Substring 

• Non-Closure 

– Intersection, complement, min, max 
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Computability 

The study of what can/cannot be 

done via purely mechanical 

means 



11/18/2014 COT 4210 © UCF 146 

Categorizing Problems (Sets) 

• Solvable or Decidable -- A problem P is said to 

be solvable (decidable) if there exists an 

algorithm F which, when applied to a question q 

in P, produces the correct answer (“yes” or 

“no”). 

• Solved -- A problem P is said to solved if P is 

solvable and we have produced its solution. 

• Unsolved, Unsolvable (Undecidable) -- 

Complements of above 

146 
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Categorizing Problems (Sets) # 2 

• Recursively enumerable -- A set S is recursively 
enumerable (re) if S is empty (S = Ø) or there 
exists an algorithm F, over the natural numbers 
, whose range is exactly S.  A problem is said 
to be re if the set associated with it is re. 

• Semi-Decidable -- A problem is said to be semi-
decidable if there is an effective procedure F 
which, when applied to a question q in P, 
produces the answer “yes” if and only if q has 
answer “yes”.  F need not halt if q has answer 
“no”. 

147 
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Immediate Implications 

• P solved implies P solvable implies P 

semi-decidable (re). 

• P non-re implies P unsolvable implies P 

unsolved. 

• P finite implies P solvable. 
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Slightly Harder Implications 

• P enumerable iff P semi-decidable. 

• P solvable iff both SP and (U — SP) are re 

(semi-decidable). 

 

• We will prove these later. 
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Hilbert’s Tenth 

Diophantine Equations are 

Unsolvable 

 One Variable Diophantine 

Equations are Solvable 
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Hilbert’s 10th is Semi-Decidable 

• Consider over one variable: P(x) = 0 

• Can semi-decide by plugging in  

0, 1, -1, 2, -2, 3, -3, … 

• This terminates and says “yes” if P(x) 

evaluates to 0, eventually. Unfortunately, it 

never terminates if there is no x such that 

P(x) =0. 

• Can easily extend to P(x1,x2,..,xk) = 0. 
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P(x) = 0 is Decidable 

• cn x
n + cn-1 x

n-1 +… + c1 x + c0 = 0 

• xn = -(cn-1 x
n-1 + … + c1 x + c0)/cn  

• |xn|  cmax(|x
n-1| + … + |x| + 1|)/|cn| 

• |xn|  cmax(n |xn-1|)/|cn|, since |x|1 

• |x|  ncmax/|cn| 

152 
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P(x) = 0 is Decidable 

• Can bound the search to values of x in range [± 
n * ( cmax / cn )], where 
n = highest order exponent in polynomial 
cmax = largest absolute value coefficient 
cn = coefficient of highest order term  

• Once we have a search bound and we are 
dealing with a countable set, we have an 
algorithm to decide if there is an x. 

• Cannot find bound when more than one 
variable, so cannot extend to P(x1,x2,..,xk) = 0. 
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Turing Machines 

1st Model 

A Linear Memory Machine 



Basic Description 

• We will use a simplified form that is a variant of Post’s and Turing’s 
models.    

• Here, each machine is represented by a finite set of states of states 
Q, the simple alphabet {0,1}, where 0 is the blank symbol, and each 
state transition is defined by a 4-tuple of form  

  q a X s 

 where q a is the discriminant based on current state q, scanned 
symbol a; X can be one of {R, L, 0, 1}, signifying move right, move 
left, print 0, or print 1; and s is the new state.   

• Limiting the alphabet to {0,1} is not really a limitation.  We can 
represent a k-letter alphabet by encoding the j-th letter via j 1’s in 
succession.  A 0 ends each letter, and two 0’s ends a word.  

• We rarely write quads.  Rather, we typically will build machines from 
simple forms.  
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Base Machines 

• R -- move right over any scanned symbol 

• L -- move left over any scanned symbol 

• 0 -- write a 0 in current scanned square 

• 1 -- write a 1 in current scanned square 

• We can then string these machines together with 
optionally labeled arc. 

• A labeled arc signifies a transition from one part of the 
composite machine to another, if the scanned square’s 
content matches the label.  Unlabeled arcs are 
unconditional.  We will put machines together without 
arcs, when the arcs are unlabeled.  
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Useful Composite Machines 

R
1
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R -- move right to next 0 (not including current square)   

 …?11…10…  …?11…10…    

L -- move left to next 0 (not including current square)   

 …011…1?…  …011…1?…    
L

1



Commentary on Machines 

• These machines can be used to move 
over encodings of letters or encodings of 
unary based natural numbers.   

• In fact, any effective computation can 
easily be viewed as being over natural 
numbers.  We can get the negative 
integers by pairing two natural numbers.  
The first is the sign (0 for +, 1 for -). The 
second is the magnitude. 
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Computing with TMs 

 A reasonably standard definition of a Turing 

computation of some n-ary function F is to 

assume that the machine starts with a tape 

containing the n inputs, x1, … , xn in the form 

  …01x101x20…01xn0… 

 and ends with 

  …01x101x20…01xn01y0… 

 where y = F(x1, … , xn). 
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Addition by TM 

 Need the copy family of useful 

submachines, where Ck copies k-th 

preceding value. 

 

 

 The add machine is then 

   C2 C2 L 1 R L 0 
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1 

0 

R L 
k R 

0 R 

k 
k+1 

1 L 
k+1 

1 



Turing Machine Variations 

• Two tracks 

• N tracks 

• Non-deterministic 

• Two-dimensional 

• K dimensional 

• Two stack machines 

• Two counter machines 
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Register Machines 

2nd Model 

Feels Like Assembly Language 



Register Machine Concepts 

• A register machine consists of a finite length program, 
each of whose instructions is chosen from a small 
repertoire of simple commands. 

• The instructions are labeled from 1 to m, where there are 
m instructions.  Termination occurs as a result of an 
attempt to execute the m+1-st instruction. 

• The storage medium of a register machine is a finite set 
of registers, each capable of storing an arbitrary natural 
number. 

• Any given register machine has a finite, predetermined 
number of registers, independent of its input. 
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Computing by Register Machines 

• A register machine partially computing some n-
ary function F typically starts with its argument 
values in the first n registers and ends with the 
result in the n+1-st register. 

• We extend this slightly to allow the computation 
to start with values in its k+1-st through k+n-th 
register, with the result appearing in the k+n+1-
th register, for any k, such that there are at least 
k+n+1 registers. 

• Sometimes, we use the notation of finishing with 
the results in the first register, and the 
arguments appearing in 2 to n+1. 
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Register Instructions 

• Each instruction of a register machine is of 
one of two forms: 

 INCr[i] –  
  increment r and jump to i. 

 DECr[p, z] – 

  if register r > 0, decrement r and jump to p 

  else jump to z 

• Note, we do not use subscripts if obvious. 
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Addition by RM 

Addition (r3  r1 + r2) 

1. DEC3[1,2] : Zero result (r3) and work (r4) registers  

2. DEC4[2,3] 

3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4 

4. INC3[5] 

5. INC4[3] 

6. DEC4[7,8] : Restore r1 

7. INC1[6] 

8. DEC2[9,11] : Add r2 to r3, saving original r2 in r4 

9. INC3[10] 

10. INC4[8] 

11. DEC4[12,13] : Restore r2 

12. INC2[11] 

13.   : Halt by branching here 
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Limited Subtraction by RM 

Subtraction (r3  r1 - r2, if r1≥r2; 0, otherwise) 

1. DEC3[1,2] : Zero result (r3) and work (r4) registers  

2. DEC4[2,3] 

3. DEC1[4,6] : Add r1 to r3, saving original r1 in r4 

4. INC3[5] 

5. INC4[3] 

6. DEC4[7,8] : Restore r1 

7. INC1[6] 

8. DEC2[9,11] : Subtract r2 from r3, saving original r2 in r4 

9. DEC3[10,10]   : Note that decrementing 0 does nothing 

10. INC4[8] 

11. DEC4[12,13] : Restore r2 

12. INC2[11] 

13.   : Halt by branching here 
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Factor Replacement 

Systems 

3rd Model 

Deceptively Simple 
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Factor Replacement Concepts 

• A factor replacement system (FRS) consists of a finite 
(ordered) sequence of fractions, and some starting 
natural number x.   

• A fraction a/b is applicable to some natural number x, 
just in case x is divisible by b.  We always chose the first 
applicable fraction (a/b), multiplying it times x to produce 
a new natural number x*a/b.  The process is then 
applied to this new number.   

• Termination occurs when no fraction is applicable.   

• A factor replacement system partially computing n-ary 
function F typically starts with its argument encoded as 
powers of the first n odd primes.  Thus, arguments 
x1,x2,…,xn are encoded as 3x15x2…pn

xn.  The result 
then appears as the power of the prime 2. 
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Addition by FRS 

 Addition is 3x15x2 becomes 2x1+x2  

 or, in more details, 203x15x2 becomes 2x1+x2 3050 

  2 / 3 

  2 / 5 

 Note that these systems are sometimes presented as 
rewriting rules of the form 

  bx    ax 

 meaning that a number that has can be factored as bx 
can have the factor b replaced by an a.   
The previous rules would then be written 

  3x    2x 

  5x    2x 
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Limited Subtraction by FRS 

 Subtraction is 3x15x2 becomes 2max(0,x1-x2)   

 

  35x    x 

  3x       2x 

  5x       x 
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Ordering of Rules 

• The ordering of rules are immaterial for the 
addition example, but are critical to the workings 
of limited subtraction. 

• In fact, if we ignore the order and just allow any 
applicable rule to be used we get a form of non-
determinism that makes these systems 
equivalent to Petri nets.   

• The ordered kind are deterministic and are 
equivalent to a Petri net in which the transitions 
are prioritized. 
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Why Deterministic? 

To see why determinism makes a difference, consider 

  35x    x 

  3x       2x 

  5x       x 

Starting with 135 = 3351, deterministically we get 

  135    9  6  4 = 22 

Non-deterministically we get a larger, less selective set. 

  135    9  6  4 = 22 

  135    90  60  40  8 = 23 

  135    45  3  2 = 21 

  135    45  15  1 = 20 

  135    45  15  5  1 = 20 

  135    45  15  3  2 = 21 

  135    45  9  6  4 = 22 

  135    90  60  40  8 = 23 

  …  

This computes 2z where 0 ≤ z≤x1. Think about it. 
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More on Determinism 

 In general, we might get an infinite set 

using non-determinism, whereas 

determinism might produce a finite set.  To 

see this consider a system 

  2x    x 

  2x    4x 

 starting with the number 2. 
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Sample RM and FRS 

Present a Register Machine that computes IsOdd. Assume R2=x; 

at termination, set R2=1 if x is odd; 0 otherwise.  

1. DEC2[2, 4] 

2. DEC2[1, 3] 

3. INC1[4] 

4.  

Present a Factor Replacement System that computes IsOdd. 

Assume starting number is 3^x; at termination, result is 2=2^1 if x 

is odd; 1= 2^0 otherwise.  

3*3 x  x 

3 x  2 x 
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Sample FRS 

Present a Factor Replacement System that computes IsPowerOf2. 

Assume starting number is 3x 5; at termination, result is 2=21 if x is 

a power of 2; 1= 20 otherwise 

32*5 x  5*7 x 

3*5*7 x  x 

3*5 x  2 x 

5*7 x  7*11 x 

7*11 x  3*11 x 

11 x  5 x 

5 x  x 

7 x  x 
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Systems Related to FRS 

• Petri Nets: 
– Unordered 

– Ordered 

– Negated Arcs 

• Vector Addition Systems: 
– Unordered 

– Ordered 

• Factors with Residues: 
– a x + c      b x + d 
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Petri Net Operation 

• Finite number of places, each of which can hold zero of more 

markers. 

• Finite number of transitions, each of which has a finite number of 

input and output arcs, starting and ending, respectively, at places. 

• A transition is enabled if all the nodes on its input arcs have at least 

as many markers as arcs leading from them to this transition. 

• Progress is made whenever at least one transition is enabled. 

Among all enabled, one is chosen randomly to fire. 

• Firing a transition removes one marker per arc from the incoming 

nodes and adds one marker per arc to the outgoing nodes. 
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Petri Net Computation 

• A Petri Net starts with some finite number of markers distributed 

throughout its n nodes.  

• The state of the net is a vector of n natural numbers, with the i-th 

component’s number indicating the contents of the i-th node. E.g., 

<0,1,4,0,6> could be the state of a Petri Net with 5 places, the 2nd, 

3rd and 5th, having 1, 4, and 6 markers, resp., and the 1st and 4th 

being empty. 

• Computation progresses by selecting and firing enabled transitions. 

Non-determinism is typical as many transitions can be 

simultaneously enabled. 

• Petri nets are often used to model coordination algorithms, 

especially for computer networks. 
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Variants of Petri Nets 

• A Petri Net is not computationally complete. In fact, its halting and 
word problems are decidable. However, its containment problem 
(are the markings of one net contained in those of another?) is not 
decidable. 

• A Petri net with prioritized transitions, such that the highest priority 
transitions is fired when multiple are enabled is equivalent to an 
FRS. (Think about it). 

• A Petri Net with negated input arcs is one where any arc with a 
slash through it contributes to enabling its associated transition only 
if the node is empty. These are computationally complete. They can 
simulate register machines. (Think about this also). 
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Petri Net Example 

Marker 

Place 

Transition 

Arc 

… … 
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Vector Addition 

• Start with a finite set of vectors in integer n-space. 

• Start with a single point with non-negative integral 

coefficients. 

• Can apply a vector only if the resultant point has non-

negative coefficients. 

• Choose randomly among acceptable vectors. 

• This generates the set of reachable points. 

• Vector addition systems are equivalent to Petri Nets. 

• If order vectors, these are equivalent to FRS.  
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Vectors as Resource Models 

• Each component of a point in n-space 
represents the quantity of a particular 
resource. 

• The vectors represent processes that 
consume and produce resources. 

• The issues are safety (do we avoid bad 
states) and liveness (do we attain a 
desired state). 

• Issues are deadlock, starvation, etc. 
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Factors with Residues 

• Rules are of form 

– ai x + ci      bi x + di 

– There are n such rules 

– Can apply if number is such that you get a residue 

(remainder) ci when you divide by ai 

– Take quotient x and produce a new number  

bi x + di 

– Can apply any applicable one (no order) 

• These systems are equivalent to Register 

Machines. 
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Undecidability 

We Can’t Do It All 



Classic Unsolvable Problem 

 Given an arbitrary program P, in some language L, and 

an input x to P, will P eventually stop when run with input 

x? 

 The above problem is called the “Halting Problem.” It is 

clearly an important and practical one – wouldn't it be 

nice to not be embarrassed by having your program run 

“forever” when you try to do a demo for the boss or 

professor? Unfortunately, there’s a fly in the ointment as 

one can prove that no algorithm can be written in L that 

solves the halting problem for L. 
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Some terminology 

 We will say that a procedure, f, converges on input x if it eventually 

halts when it receives x as input. We denote this as f(x).  

 

 We will say that a procedure, f, diverges on input x if it never halts 

when it receives x as input. We denote this as f(x).  

 

 Of course, if f(x) then f defines a value for x. In fact we also say 

that f(x) is defined if f(x) and undefined if f(x). 

 

 Finally, we define the domain of f as {x | f(x)}.  

The range of f is {y | there exists an x, f(x) and f(x) = y }. 
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Halting Problem 

 Assume we can decide the halting problem.  Then there exists some total 
function Halt such that 

    1  if [x] (y) is defined 

 Halt(x,y)  = 

      0  if [x] (y) is not defined 

 Here, we have numbered all programs and [x] refers to the x-th program in 
this ordering.  Now we can view Halt as a mapping from N into N  by 
treating its input as a single number representing the pairing of two numbers 
via the one-one onto function 
 

 pair(x,y) = <x,y> = 2x  (2y + 1) – 1 
 

 with inverses  

  <z>1 = exp(z+1,1) 
  
 <z>2 = ((( z + 1 ) // 2 <z>1  ) – 1 ) // 2 
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The Contradiction 

 Now if Halt exist, then so does Disagree, where 
   0   if Halt(x,x) = 0, i.e, if [x] (x) is not defined 

 Disagree(x) = 

     my (y == y+1)  if Halt(x,x) = 1, i.e, if [x] (x) is defined 

  

 Since Disagree is a program from N into N  , Disagree can be 
reasoned about by Halt.  Let d be such that Disagree = [d], then 

 Disagree(d) is defined   Halt(d,d) = 0  
     [d](d) is undefined  

  Disagree(d) is undefined 

 But this means that Disagree contradicts its own existence.  Since 
every step we took was constructive, except for the original 
assumption, we must presume that the original assumption was in 
error.  Thus, the Halting Problem is not solvable. 



Halting is recognizable 

 While the Halting Problem is not solvable, it is re, recognizable or 
semi-decidable.  

 To see this, consider the following semi-decision procedure. Let P 
be an arbitrary procedure and let x be an arbitrary natural number.  
Run the procedure P on input x until it stops. If it stops, say “yes.” If 
P does not stop, we will provide no answer. This semi-decides the 
Halting Problem. Here is a procedural description. 

 

 Semi_Decide_Halting() { 

  Read P, x; 

  P(x); 

  Print “yes”; 

 } 
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Why not just algorithms? 

 A question that might come to mind is why we could not just have a 
model of computation that involves only programs that halt for all 
input. Assume you have such a model – our claim is that this model 
must be incomplete! 

 

 Here’s the logic. Any programming language needs to have an 
associated grammar that can be used to generate all legitimate 
programs. By ordering the rules of the grammar in a way that 
generates programs in some lexical or syntactic order, we have a 
means to recursively enumerate the set of all programs. Thus, the 
set of procedures (programs) is re. using this fact, we will employ 
the notation that x is the x-th procedure and x(y) is the x-th 
procedure with input y. We also refer to x as the procedure’s index. 
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The universal machine 

 First, we can all agree that any complete model of 
computation must be able to simulate programs in its 
own language. We refer to such a simulator (interpreter) 
as the Universal machine, denote Univ. This program 
gets two inputs. The first is a description of the program 
to be simulated and the second of the input to that 
program. Since the set of programs in a model is re, we 
will assume both arguments are natural numbers; the 
first being the index of the program. Thus, 

 

 Univ(x,y) = x(y) 
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Non-re Problems 

• There are even “practical” problems that are worse than 
unsolvable -- they’re not even semi-decidable.   

• The classic non-re problem is the Uniform Halting 
Problem, that is, the problem to decide of an arbitrary 
effective procedure P, whether or not P is an algorithm.   

• Assume that the algorithms can be enumerated, and that 
F accomplishes this.  Then 
 
F(x) = Fx  
 
where F0, F1, F2, … is a list of indexes of all and only the 
algorithms 
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The Contradiction 

• Define  G( x ) = Univ ( F(x) , x ) + 1 = F(x)( x ) = Fx(x) + 1 

 

• But then G is itself an algorithm.  Assume it is the g-th one 
 
  F(g) = Fg = G 
 
Then,  G(g) = Fg(g) + 1 = G(g) + 1 
 

• But then G contradicts its own existence since G would need to be 
an algorithm. 

• This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is 
undefined.  In fact, we already have shown how to enumerate the 
(partial) recursive functions. 
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Enumeration Theorem 

• Define  
 Wn = { x  N | (n,x) } 

• Theorem: A set B is re iff there exists an n 
such that B = Wn. 
Proof: Follows from definition of (n,x). 

• This gives us a way to enumerate the 
recursively enumerable (semi-decidable) 
sets. 

11/18/2014 
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The Set TOTAL 

• The listing of all algorithms can be viewed 

as 

TOTAL = { f  N | x f (x) } 

• We can also note that 

TOTAL = { f  N | Wf = N }, where Wf is 

the domain of f 

• Theorem: TOTAL is not re. 

Proof: Shown earlier. 



Consequences 

• To capture all the algorithms, any model of computation 
must include some procedures that are not algorithms. 

 

• Since the potential for non-termination is required, every 
complete model must have some for form of iteration 
that is potentially unbounded. 

 

• This means that simple, well-behaved for-loops (the kind 
where you can predict the number of iterations on entry 
to the loop) are not sufficient. While type loops are 
needed, even if implicit rather than explicit. 
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Insights 



Non-re nature of algorithms 

• No generative system (e.g., grammar) can produce 

descriptions of all and only algorithms 

• No parsing system (even one that rejects by 

divergence) can accept all and only algorithms 

 

• Of course, if you buy Church’s Theorem, the set of all 

procedures can be generated. In fact, we can build an 

algorithmic acceptor of such programs.  
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Many unbounded ways 

• How do you achieve divergence, i.e., what are the 

various means of unbounded computation in each of 

our models? 

• GOTO: Turing Machines and Register Machines 

• Minimization: Recursive Functions 

– Why not primitive recursion/iteration? 

• Fixed Point: Ordered Petri Nets,   

(Ordered) Factor Replacement Systems 
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Non-determinism 

• It sometimes doesn’t matter 

– Turing Machines, Finite State Automata,  

Linear Bounded Automata 

 

• It sometimes helps 

– Push Down Automata 

 

• It sometimes hinders 

– Factor Replacement Systems, Petri Nets 
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Reducibility 
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Reduction Concepts 

• Proofs by contradiction are tedious after you’ve 

seen a few.  We really would like proofs that 

build on known unsolvable problems to show 

other, open problems are unsolvable.  The 

technique commonly used is called reduction.  It 

starts with some known unsolvable problem and 

then shows that this problem is no harder than 

some open problem in which we are interested. 
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Reduction Example#1 

• We can show that the Halting Problem is no harder than the Uniform 
Halting Problem.  Since we already know that the Halting Problem is 
unsolvable, we would now know that the Uniform Halting Problem is 
also unsolvable.  We cannot reduce in the other direction since the 
Uniform Halting Problem is in fact harder. 

 

• Let F be some arbitrary effective procedure and let x be some 
arbitrary natural number. 

 

• Define Fx(y) = F(x), for all  y  N 

 

• Then Fx is an algorithm if and only if F halts on x. 
 

• Thus a solution to the Uniform Halting Problem (TOTAL) would 
provide a solution to the Halting Problem (HALT). 
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Reduction Examples#2&3 

• In all cases below we are assuming our variables are over . 

 

• HALT = { <f,x> | f (x) } is unsolvable (undecidable, non-recursive) 

• TOTAL = { f | x f (x) } = { f | Wf =N } is not even recursively 
enumerable (re, semidecidable) 

 

• Show ZERO = { f | x f (x) = 0 } is unsolvable. 
<f,x>  HALT iff g(y) = f (x) - f (x) is zero for all y. 
Thus, <f,x>  HALT iff g  ZERO (really the index of g). 
A solution to ZERO implies one for HALT, so ZERO is unsolvable. 

 

• Show ZERO = { f | x f (x) = 0 } is non-re. 
<f>  TOTAL iff h(x) = f (x) - f (x) is zero for all x. 
Thus, f  TOTAL iff h  ZERO (really the index of h). 
A semi-decision procedure for ZERO implies one for TOTAL, so 
ZERO is non-re. 
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Assignment # 7 

 

Known Results: 

Halt = { f,x | f(x) } is re (semi-decidable) but undecidable 

Total = { f | x f(x) } is non-re (not even semi-decidable) 

 

1. Use reduction from Halt to show that one cannot decide { f | x f(x) = x } is 

undecidable 

2. Show that { f | x f(x) = x } reduces to Halt. (1 plus 2 show they are equally hard) 

3. Use reduction from Halt to show that one cannot decide  { f | x f(x+1)=2*f(x)+1}  

Note that f(0) can be any value. 

4. Use Reduction from Total to show that { f | x f(x+1)=2*f(x)+1} is not even re 

5. Show { f | x f(x+1)=2*f(x)+1} reduces to Total. (4 plus 5 show they are equally 

hard) 

  

Due: November 18, at start of class (1:30PM). 



Reduction and Equivalence 

m-1, 1-1, Turing Degrees 
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Many-One Reduction 

• Let A and B be two sets.  

• We say A many-one reduces to B,  
A m B, if there exists an algorithm f such that 
x  A  f(x)  B 

• We say that A is many-one equivalent to B,  
A m B, if A m B and B m A 

• Sets that are many-one equivalent are in some 
sense equally hard or easy. 
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Many-One Degrees 

• The relationship A m B is an equivalence 

relationship (why?) 

• If A m B, we say A and B are of the same many-
one degree (of unsolvability). 

• Decidable problems occupy three m-1 degrees: 
, N, all others. 

• The hierarchy of undecidable m-1 degrees is an 
infinite lattice (I’ll discuss in class) 
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One-One Reduction 

• Let A and B be two sets.  

• We say A one-one reduces to B, A 1 B,  
if there exists a 1-1 algorithm f such that 
x  A  f(x)  B 

• We say that A is one-one equivalent to B,  
A 1 B, if A 1 B and B 1 A 

• Sets that are one-one equivalent are in a strong 
sense equally hard or easy. 



11/18/2014 COT 4210 © UCF 211 

One-One Degrees 

• The relationship A 1 B is an equivalence 
relationship (why?) 

• If A 1 B, we say A and B are of the same one-
one degree (of unsolvability). 

• Decidable problems occupy infinitely many 1-1 
degrees: each cardinality defines another 1-1 
degree (think about it). 

• The hierarchy of undecidable 1-1 degrees is an 
infinite lattice. 
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Turing (Oracle) Reduction 

• Let A and B be two sets.  

• We say A Turing reduces to B, A t B, if the 
existence of an oracle for B would provide us 
with a decision procedure for A. 

• We say that A is Turing equivalent to B,  
A t B, if A t B and B t A 

• Sets that are Turing equivalent are in a very 
loose sense equally hard or easy. 
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Turing Degrees 

• The relationship A t B is an equivalence 
relationship (why?) 

• If A t B, we say A and B are of the same Turing 
degree (of unsolvability). 

• Decidable problems occupy one Turing degree. 
We really don’t even need the oracle. 

• The hierarchy of undecidable Turing degrees is 
an infinite lattice. 
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Complete re Sets 

• A set C is re 1-1 (m-1, Turing) complete if, for 

any re set A, A 1 (m , t ) C. 

• The set HALT is an re complete set (in regard to 
1-1, m-1 and Turing reducibility). 

• The re complete degree (in each sense of 
degree) sits at the top of the lattice of re 
degrees. 
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The Set Halt = K0 

• Halt = K0 = { <f, x> | f (x) is defined } 

• Let A be an arbitrary re set. By definition, there exists an 

effective procedure a, such that dom(a) = A. Put 
equivalently, there exists an index, a, such that A = Wa. 

• x  A iff x  dom(a) iff a(x) iff <a,x>  K0 

• The above provides a 1-1 function that reduces A to K0 

(A 1 K0)  

• Thus the universal set, Halt = K0, is an re  
(1-1, m-1, Turing) complete set. 
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The Set K 

• K = { f | f(f) is defined } 

• Define fx(y) = f(x). That is, y fx(y) = f(x). Let the index 
of fx be fx. (Yeah, that’s overloading.) 

 

• <f,x>  K0 iff x  dom(f) iff y[fx
(y)] implies fx  K. 

• <f,x>  K0 iff x  dom(f) iff y[fx
(y) ] implies fx  K. 

 

• The above provides a 1-1 function that reduces K0 to K.  

• Since K0 is an re (1-1, m-1, Turing) complete set and K is 
re, then K is also re (1-1, m-1, Turing) complete. 



Reduction and Rice’s 
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Either Trivial or Undecidable 

• Let P be some set of re languages, e.g. P = { L | L is infinite re }.   

 

• We call P a property of re languages since it divides the class of all 
re languages into two subsets, those having property P and those 
not having property P.   

 

• P is said to be trivial if it is empty (this is not the same as saying P 
contains the empty set) or contains all re languages.   

 

• Trivial properties are not very discriminating in the way they divide 
up the re languages (all or nothing). 
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Rice’s Theorem 

 Rice’s Theorem: Let P be some non-trivial property of the re languages. Then 

  LP = { x | dom [x] = dom x is in P (has property P) } 

 is undecidable.  Note that membership in LP is based purely on the domain of a 
function, not on any aspect of its implementation. 

  

 Proof:  We will assume, wlog, that P does not contain Ø.  If it does we switch our 
attention to the complement of P.  Now, since P is non-trivial, there exists some 
language L with property P.  Let [r] = r be a recursive function whose domain is L (r 
is the index of a semi-decision procedure for L).  Suppose P were decidable.  We will 
use this decision procedure and the existence of r to decide K0.  First we define a 
function Fr,x,y for r and each function [x] = x and input y as follows. 

  Fr,x,y( z ) = x(y) + r(z)  

 The domain of this function is L if x(y) converges, otherwise it’s Ø.  Now if we can 
determine membership in LP , we can use this algorithm to decide K0 merely by 
applying it to Fr,x,y.  An answer as to whether or not Fr,x,y has property P is also the 

correct answer as to whether or not x(y) converges.   
Thus, there can be no decision procedure for P.  And consequently, there can be no 
decision procedure for any non-trivial property of re languages. 
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Rice’s Picture Proof 

x 

y 
x(y) 

r(z) 

z 

Let P be an arbitrary, non-trivial, I/O property of effective procedures. 

Assume wlog that the functions with empty domains are not in P. 

Given x, y, r, where r is in the set SP.= {f | f has property P}, define the 

function fx,y,r(z) = x(y) - x(y) + r(z). The following illustrates fx,y,r.  

Here, dom(fx,y,r) = dom(r) (fx,y,r(z) = r(z)) if x(y) ; =  if x(y) .  

Thus, x(y) iff fx,y,r has property P, and so K0 1 SP. 

dom(fx,y,r) =  If x(y)  

rng(fx,y,r) =  If x(y) 

rng(fx,y,r) = rng(r) If x(y)  

dom(fx,y,r) = dom(r) If x(y) 
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Corollaries to Rice’s 

 Corollary:  The following properties of re 

sets are undecidable 

  a)  L = Ø 

  b)  L is finite 

  c)  L is a regular set 

  d)  L is a context-free set 



Recursively Enumerable 

Properties of re Sets 
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Definition of re 

• Some texts define re in the same way as I have defined 
semi-decidable.  

 S  N is semi-decidable iff there exists a partially 
computable function g where 

  S = { x  N | g(x) } 

• I prefer the definition of re that says  
S  N is re iff S =  or there exists an algorithm f where  

  S = { y | x f(x) == y } 

• We will prove these equivalent. Actually, f can be a 
primitive recursive function. (described briefly in class) 

11/18/2014 
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STP Predicate 

• STP(f, x1,…,xn, t ) is a predicate defined 

to be true iff f(x1,…,xn) converges in at 

most t steps. 

• STP can be shown to be a simple 

algorithm. Consider, for instance, a 

universal machine (interpreter) that is told 

the maximum number of step to simulate. 

11/18/2014 
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Semi-Decidable Implies re 

Theorem: Let S be semi-decided by GS. Assume 
GS is the gS function in our enumeration of 
effective procedures.  If S = Ø then S is re by 
definition, so we will assume wlog that there is 
some a  S. Define the enumerating algorithm 
FS by 

 FS(<x,t>) =  x * STP(gs, x, t )  

    + a * (1-STP(gs, x, t )) 

 Note: FS is primitive recursive and it enumerates 
every value in S infinitely often.  

11/18/2014 
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re Implies Semi-Decidable 

Theorem: By definition, S is re iff S == Ø or there 
exists an algorithm FS, over the natural numbers 
, whose range is exactly S. Define 
  
  y [y == y+1], if S == Ø  

  S(x) = 

   y [FS(y)==x], otherwise 

 This achieves our result as the domain of S is 
the range of FS, or empty if S == Ø. 

11/18/2014 
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Domain of a Procedure 

Corollary: S is re/semi-decidable iff S is the 
domain / range of a partial recursive predicate 
FS. 

Proof: The predicate S we defined earlier to semi-
decide S, given its enumerating function, can be 
easily adapted to have this property. 

   y [y == y+1],  if S == Ø  

 S(x) = 

   x*(y [FS(y)==x]), otherwise 

11/18/2014 
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Recursive Implies re  

Theorem: Recursive implies re. 

Proof: S is recursive implies there is an algorithm 

fS such that 

  S = { x  N | fs(x) == 1 } 

 Define gs(x) = y (fs(x) == 1) 

 Clearly  

dom(gs) = {x  N | gs(x)}  

  = { x  N | fs(x) == 1 }  

  = S 

11/18/2014 



© UCF EECS 229 

Related Results 

Theorem: S is re iff S is semi-decidable. 

Proof: That’s what we proved. 

Theorem: S and ~S are both re (semi-decidable) 
iff S (equivalently ~S) is recursive (decidable). 

Proof: Let fS semi-decide S and fS’ semi-decide ~S. We 
can decide S by gS  

 gS(x) = STP(fS, x, mt (STP(fS, x, t) || STP(fS’ ,x, t))  
 ~S is decided by gS’(x) = ~gS(x) = 1- gS(x). 

 The other direction is immediate since, if S is decidable 
then ~S is decidable (just complement gS) and hence 
they are both re (semi-decidable). 

11/18/2014 
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re Characterizations 

Theorem: Suppose S  then the following are 

equivalent: 

1. S is re 

2. S is the range of a primitive rec. function 

3. S is the range of a recursive function 

4. S is the range of a partial rec. function 

5. S is the domain of a partial rec. function 

 

11/18/2014 
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Quantification#1 

• S is decidable iff there exists an algorithm cS (called S’s 

characteristic function) such that 

x  S  cS(x) 

This is just the definition of decidable. 

 

• S is re iff there exists an algorithm AS where  

 x  S  t AS(x,t) 

This is clear since, if gS is the index of a procedure S 

that semi-decides S, then 

 x  S  t STP(gS, x, t) 

So, AS(x,t) = STPgS( x, t ), where STPgS is the STP 

function with its first argument fixed.  
11/18/2014 
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Quantification#2 

• S is re iff there exists an algorithm AS such that 

 x  S  t AS(x,t) 

This is clear since, if gS is the index of the procedure S that 

semi-decides S, then 

 x  S  ~t STP(gS, x, t)  t ~STP(gS, x, t) 

So, AS(x,t) = ~STPgS( x, t ), where STPgS is the STP function 

with its first argument fixed.  

• Note that this works even if S is recursive (decidable). The 

important thing there is that if S is recursive then it may be 

viewed in two normal forms, one with existential quantification 

and the other with universal quantification. 

• The complement of an re set is co-re. A set is recursive 

(decidable) iff it is both re and co-re. 

11/18/2014 
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Quantification#3 

• The Uniform Halting Problem was already 

shown to be non-re. It turns out its complement 

is also not re. In fact, we can (but won’t) show 

that TOTAL requires an alternation of 

quantifiers. Specifically, 

 

f  TOTAL  xt ( STP( f, x, t ) ) 

and this is the minimum quantification we can 

use, given that the quantified predicate is 

recursive. 

11/18/2014 
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Practice Assignment # 8 

1. Use Rice’s Theorem to show that { f | x f(x) = 0 } is undecidable  

2. Use Rice’s Theorem to show that {f | x f(x+1)=f(x)+1} is undecidable  

3. Use quantification of an algorithmic predicate to estimate the 

complexity (decidable, re, co-re, non-re) of each of the following, (a)-(d): 

a) { f | for all input x, f(x) = f(0), that is f is a constant function } 

b) { f | for two unique input values, x,y, f(x) = f(y) } 

c) { <f,x> | f(x) takes at least 10 time steps before converging } 

d) { <f,x> | f(x) } 

4. Let sets A and B each be re non-recursive (undecidable).  

Consider C = A  B. For (a)-(c), either show sets A and B with the 

specified property or demonstrate that this property cannot hold.  

a) Can C be recursive?  

b) Can C be re non-recursive (undecidable)?  

c) Can C be non-re?    

 

 

 

 

Due: Tuesday, November 25, at start of class (1:30PM). 
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Sample Question#1 

1. Given that the predicate STP and the 

function VALUE are algorithms, show 

that we can semi-decide  

 
HZ = { f | f evaluates to 0 for some input} 

 

Note: STP( f, x, s ) is true iff f(x) 

converges in s or fewer steps and, if so, 

VALUE(f, x, s) = f(x).   

11/18/2014 © UCF EECS 
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Sample Questions#2,3 

2. Use Rice’s Theorem to show that HZ is 

undecidable, where HZ is 

 

HZ = { f | f evaluates to 0 for some input}  

 

3. Redo using Reduction from HALT. 

11/18/2014 © UCF EECS 
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Sample Question#4 

4. Let P = { f |  x [ STP(f, x, x) ] }. Why 

does Rice’s theorem not tell us anything 

about the undecidability of P? 

11/18/2014 © UCF EECS 
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Sample Question#5 

5. Let S be an re (recursively enumerable), non-
recursive set, and T be an re, possibly 
recursive set. Let  

 E = { z | z = x + y, where x  S and y  T }.  

 Answer with proofs, algorithms or 
counterexamples, as appropriate, each of the 
following questions: 

 (a) Can E be non re? 

 (b) Can E be re non-recursive? 

 (c) Can E be recursive?  

11/18/2014 © UCF EECS 



Grammars 
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Grammars and re Sets 

• Every grammar lists an re set. 

• Some grammars (regular, CFL and CSG) 

produce recursive sets. 

• Type 0 grammars are as powerful at listing 

re sets as Turing machines are at 

enumerating re sets (Proof later). 
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Post Correspondence Problem 

• Many problems related to grammars can be shown to be 
no more complex than the Post Correspondence 
Problem (PCP).   

• Each instance of PCP is denoted: Given n>0,  a finite 
alphabet, and two n-tuples of words   
( x1, … , xn ), ( y1, … , yn ) over ,  
does there exist a sequence i1, … , ik  , k>0, 1 ≤ ij ≤ n, 
such that 
xi1

 … xik
 = yi1

 … yik
  ?   

• Example of PCP:  
n = 3,  = { a , b }, ( a b a , b b , a ),  ( b a b , b , b a a ). 
Solution 2 , 3, 1 , 2     
b b   a   a b a   b b   =   b   b a a   b a b   b 

• In general, PCP is undecidable (no proof will be given) 



PCP is undecidable 

• We will not prove this here, but the essential ideas is that we can 
embed computational traces in instances of PCP, such that a 
solution exists if and only if the computation terminates. 

 

• Such a construction shows that the Halting Problem is reducible to 
PCP and so PCP must also be undecidable. 

 

• As we will see PCP can often be reduced to problems about 
grammars, showing those problems to also be undecidable. 
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Ambiguity of CFG 

• Problem to determine if an arbitrary CFG 
is ambiguous  

S  A  |  B 

A  xi A [i]  |   xi [i]  1 ≤ i ≤ n 

B  yi B [i]  |   yi [i]  1 ≤ i ≤ n 

A *  xi1
 … xik

 [ik] … [i1]  k > 0 

B * yi1
 … yik

 [ik] … [i1]  k > 0 

• Ambiguous if and only if there is a solution 
to this PCP instance.  
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Intersection of CFLs 

• Problem to determine if arbitrary CFG’s 
define overlapping languages 

• Just take the grammar consisting of all the 
A-rules from previous, and a second 
grammar consisting of all the B-rules.  Call 
the languages generated by these 
grammars, LA and LB.  
LA  LB ≠  Ø, if and only there is a solution 
to this PCP instance. 
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Non-emptiness of CSL 

 S    xi S yi
R | xi T yi

R  1 ≤ i ≤ n 

 a T a   * T * 

 * a   a * 

 a *   * a 

 T     * 

• Our only terminal is *.  We get strings of 
form *

2j+1, for some j’s if and only if there 
is a solution to this PCP instance. 
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Traces (Valid Computations) 

• A trace of a machine M, is a word of the form 
 
# X0 # X1 # X2 # X3 # … # Xk-1 # Xk # 
 
where Xi  Xi+1 0 ≤ i < k, X0 is a starting configuration and Xk is a 
terminating configuration.   

• We allow some laxness, where the configurations might be encoded 
in a convenient manner. For example we might use reversals on the 
odd strings so the relation between each pair is context free.  

• Many texts show that a context free grammar can be devised which 
approximates traces by either getting the even-odd pairs right, or the 
odd-even pairs right.  The goal is to then to intersect the two 
languages, so the result is a trace.  This then allows us to create 
CFLs L1 and L2, where L1  L2 ≠ Ø , just in case the machine has 
an element in its domain.  Since this is undecidable, the non-
emptiness of the intersection problem is also undecidable. This is an 
alternate proof to one we already showed based on PCP. 



One step traces 

• The set of one step traces of a machine, M, is  
 
{ X0 # X1 } 
 
where X0  X1 

• If we are considering Turing Machines, we use 
{ X0 # X1

R } 
 
where X0  X1 and X1

R is the reversal of X1  

• By using the reversal we make the language no harder 
than W # WR, which is a CFL. 
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Turing Machine Traces 

• A valid trace 

– C1 # C2
R $ C3 # C4

R  … $ C2k-1 # C2k
R $, where 

k  1 and Ci  M  Ci+1, for 1  i < 2k. Here, M 
means derive in M, and CR means C with its 
characters reversed  

• An invalid trace 

– C1 # C2
R $ C3 # C4

R  … $ C2k-1 # C2k
R $, where 

k  1 and for some i, it is false that  
Ci  M  Ci+1.  
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What’s Context Free? 

• Given a Turing Machine M 

– The set of invalid traces of M is Context Free 

– The set of valid traces is Context Sensitive 

– The set of valid terminating traces is Context 
Sensitive 

– The complement of the valid traces is Context 
Free 

– The complement of the valid terminating 
traces is Context Free 



Partially correct traces 

L1 =  L( G1 ) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # } 

where Y2i  Y2i+1 , 0 ≤ i ≤ j.   

This checks the even/odd steps of an even length computation. 

But, L2 =  L( G2 ) = {#X0#X1#X2#X3#X4 #…# X2k-1#X2k#Z0#} 

where X2i-1  X2i , 1 ≤ i ≤ k.   

This checks the odd/steps of an even length computation. 

 

L = L1  L2 describes correct traces (checked even/odd and 
odd/even). If Z0 is chosen to be a terminal configuration, then these 
are terminating traces. If we pick a fixed X0, then X0 is a halting 
configuration iff L is non-empty. This is an independent proof of the 
undecidability of the non-empty intersection problem for CFGs and 
the non-emptiness problem for CSGs. 
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What’s Undecidable? 

• We cannot decide if the set of valid 

terminating traces of an arbitrary machine 

M is non-empty. 

• We cannot decide if the complement of the 

set of valid terminating traces of an 

arbitrary machine M is everything. In fact, 

this is not even semi-decidable. 
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L = *?  

• If L is regular, then L = *?  is decidable 

– Easy – Reduce to minimal deterministic FSA, 

AL accepting L. L = * iff AL is a one-state 

machine, whose only state is accepting 

• If L is context free, then L = *?  is 

undecidable 

– Just produce the complement of a Turing 

Machine’s valid terminating traces 



Quotients of CFLs 

L1 =  L( G1 ) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # } 

where Y2i  Y2i+1 , 0 ≤ i ≤ j.   

This checks the even/odd steps of an even length computation. 

But, L2 =  L( G2 ) = {X0 $  #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #} 

where X2i-1  X2i , 1 ≤ i ≤ k and Z is a unique halting configuration. 

This checks the odd/steps of an even length computation, and includes an 
extra copy of the starting number prior to its $. 

 Now, consider the quotient of L2 / L1 .  The only ways a member of L1 can 
match a final substring in L2 is to line up the $ signs.  But then they serve to 
check out the validity and termination of the computation.  Moreover, the 
quotient leaves only the starting point (the one on which the machine halts.)  
Thus, 

 L2 / L1  = { X0 | the system halts}.  

 Since deciding the members of an re set is in general undecidable, we have 
shown that membership in the quotient of two CFLs is also undecidable. 
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Traces and Type 0  

• Assume we are given some machine M, with Turing table T (using Post notation). We 
assume a tape alphabet of  that includes a blank symbol B. 

• Consider a starting configuration C0. Our rules will be 
S     # C0 # where C0 = Yq0aX is initial ID 

q a     s b if q a b s  T 

b q a x     b a s x if q a R s  T, a,b,x   

b q a #     b a s B # if q a R s  T, a,b   

# q a x     # a s x if q a R s  T, a,x  , a≠B 

# q a #     # a s B # if q a R s  T, a  , a≠B 

# q a x     # s x # if q a R s  T, x  , a=B 

# q a #     # s B # if q a R s  T, a=B 

b q a x     s b a x if q a L s  T, a,b,x   

# q a x     # s B a x if q a L s  T, a,x   

b q a #     s b a # if q a L s  T, a,b  , a≠B 

# q a #     # s B a # if q a L s  T, a  , a≠B 

b q a #     s b # if q a L s  T, b  , a=B 

# q a #     # s B # if q a L s  T, a=B 

f        if f is a final state 

#       just cleaning up the dirty linen  
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CSG and Undecidability 

• We can almost do anything with a CSG that can be done with a Type 0 
grammar.  The only thing lacking is the ability to reduce lengths, but we can 
throw in a character that we think of as meaning “deleted”.  Let’s use the 
letter d as a deleted character, and use the letter e to mark both ends of a 
word. 

• Let G = ( V, T, P , S) be an arbitrary Type 0 grammar. 

• Define the CSG G’ = (V  {S’, D}, T  {d, e}, S’, P’), where P’ is 
S’    e S e 

D x  x D when x  V  T 

D e  e d push the delete characters to far right 

    where     P and || ≤ || 

   Dk where     P and || - || = k > 0 

• Clearly, L(G’) = { e w e dm | w  L(G) and m≥0 is some integer } 

• For each w  L(G), we cannot, in general, determine for which values of m, 
e w e dm  L(G’).  We would need to ask a potentially infinite number of 
questions of the form  
“does e w e dm  L(G’)” to determine if w  L(G).  That’s a semi-decision 
procedure. 
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Some Consequences 

• CSGs are not closed under Init, Final, Mid, quotient with 

regular sets and homomorphism (okay for -free 

homomorphism) 

• We also have that the emptiness problem is undecidable 

from this result.  That gives us two proofs of this one 

result. 

• For Type 0, emptiness and even the membership 

problems are undecidable. 



Summary of Grammar 

Results 



11/18/2014 COT 4210 © UCF 258 

Decidability 

• Everything about regular 

• Membership in CFLs and CSLs 

– CKY for CFLs 

• Emptiness for CFLs 
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Undecidability 

• Is L =, for CSL, L? 

• Is L=*, for CFL (CSL), L? 

• Is L1=L2 for CFLs (CSLs), L1, L2? 

• Is L1L2 for CFLs (CSLs ), L1, L2? 

• Is L1L2= for CFLs (CSLs ), L1, L2? 

• Is L regular, for CFL (CSL), L? 

• Is L1L2 a CFL for CFLs, L1, L2? 

• Is ~L CFL, for CFL, L? 
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More Undecidability 

• Is CFL, L, ambiguous? 

• Is L=L2, L a CFL? 

• Does there exist a finite n, Ln=LN+1? 

• Is L1/L2 finite, L1 and L2 CFLs? 

• Membership in L1/L2, L1 and L2 CFLs? 



Computational Complexity 

Limited to Concepts of P and NP 

COT6410 covers much more 



P = Polynomial Time 

• P is the class of decision problems containing all 
those that can be solved by a deterministic 
Turing machine using polynomial time in the size 
of each instance of the problem. 

• P contain linear programming over real 
numbers, but not when the solution is 
constrained to integers.  

• P even contains the problem of determining if a 
number is prime. 
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NP = Non-Det. Poly Time 

• NP is the class of decision problems solvable in 
polynomial time on a non-deterministic Turing machine.  

• Clearly P  NP. Whether or not this is proper inclusion is 
the well-known challenge P = NP? 

• NP can also be described as the class of decision 
problems that can be verified in polynomial time.  This is 
the most useful version of a definition of NP. 

• NP can even be described as the class of decision 
problems that can be solved in polynomial time when no 
a priori bound is placed on the number of processors 
that can be used in the algorithm. 
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NP-Complete; NP-Hard 

• A decision problem, C, is NP-complete if: 
– C is in NP and  

– C is NP-hard. That is, every problem in NP is polynomially reducible to C. 

• D polynomially reduces to C  means that there is a deterministic polynomial-
time many-one algorithm, f, that transforms each instance x of D into an 
instance f(x) of C, such that the answer to f(x) is YES if and only if the 
answer to x is YES.  

• To prove that an NP problem A is NP-complete, it is sufficient to show that 
an already known NP-complete problem polynomially reduces to A. By 
transitivity, this shows that A is NP-hard. 

• A consequence of this definition is that if we had a polynomial time 
algorithm for any NP-complete problem C, we could solve all problems in 
NP in polynomial time. That is, P = NP. 

• Note that NP-hard does not necessarily mean NP-complete, as a given NP-
hard problem could be outside NP. 



Satisfiability 

U = {u1, u2,…, un}, Boolean variables. 

 

(CNF – Conjunctive Normal Form)  

C = {c1, c2,…, cm}, conjunction(anding) of "OR clauses” 

  

 Example clause: 

  ci = (u4  u35  ~u18  u3…  ~u6)  



Satisfiability 

  

 Can we assign Boolean values to the variables in U 

so that every clause is TRUE? 

 

 There is no known polynomial algorithm!! 
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SAT 

• SAT is the problem to decide of an arbitrary 
Boolean formula (wff in the propositional 
calculus) whether or not this formula is 
satisfiable (has a set of variable assignments 
that evaluate the expression to true). 

• SAT clearly can be solved in time k2n, where k is 
the length of the formula and n is the number of 
variables in the formula. 

• What we can show is that SAT is NP-complete, 
providing us our first concrete example of an 
NP-complete decision problem. 
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Simulating ND TM 

• Given a TM, M, and an input w, we need to create a 
formula, M,w, containing a polynomial number of terms 
that is satisfiable just in case M accepts w in polynomial 
time. 

• The formula must encode within its terms a trace of 
configurations that includes 
– A term for the starting configuration of the TM 

– Terms for all accepting configurations of the TM 

– Terms that ensure the consistency of each configuration 

– Terms that ensure that each configuration after the first 
follows from the prior configuration by a single move  
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Cook’s Theorem 

• M,w = cell  start  move  accept 

• See the following for a detailed description  

and discussion of the four terms that make 

up this formula. 
• http://www.cs.tau.ac.il/~safra/Complexity/Cook.ppt 



NP–Complete 

 Since SAT is itself in NP, that means SAT is a 
hardest problem in NP (there can be more 
than one.). 

 

 As with RE problems, a hardest problem in a 
class is called the "completion" of that class.  

 

 Therefore, SAT is NP–Complete. 



NP–Complete 

 Within a year, Richard Karp added 22 problems to 
this special class. 

  

 These included such problems as:  

  3-SAT 

  3DM 

  Vertex Cover,  

  Independent Set,  

  Knapsack,  

  Multiprocessor Scheduling, and  

  Partition. 

   



SubsetSum 

   S = {s1, s2, …, sn}  

  set of positive integers 

   and an integer B. 

 

Question: Does S have a subset whose        
values sum to B? 

 No one knows of a polynomial algorithm. 

 

 {No one has proven there isn’t one, either!!} 



SubsetSum and Partition 

 

 Theorem. SAT P 3SAT 

 

 Theorem. 3SAT P SubsetSum 

 

 Theorem. SubsetSum P Partition 

 

 Theorem. Partition P SubsetSum 

 

 Therefore, not only is Satisfiability in NP–Complete, but so is 

3SAT, Partition, and SubsetSum. 

 

 



SAT to 3SAT 

• 3-SAT means that each clause has exactly three 
terms 

• If one term, e.g., (p), extend to (ppp) 

• If two terms, e.g., (pq), extend to (pqp) 

• Any clause with three terms is fine 

• If n > three terms, can reduce to two clauses, one 
with three terms and one with n-1 terms, e.g., 
(p1p2…pn) to  
(p1p2z) & (p3…pn~z), where z is a new 
variable. If n=4, we are done, else apply this 
approach again with the clause having n-1 terms 

 



Example SubsetSum 
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Assuming a 3SAT expression (a + ~b + c) (~a + b + ~c), the following 

shows the reduction from 3SAT to Subset-Sum.  

 a  b  c  a + ~b + c  ~a + b + ~c   

a  1     1   

~a  1       1 

b   1      1 

~b   1    1 

c    1   1 

~c    1     1 

C1      1   

C1’      1   

C2        1   

C2’        1   

 1  1  1   3   3   



Partition 

• Partition is polynomial equivalent to SubsetSum 

– Let i1, i2, .., in , G be an instance of SubsetSum. This 

instance has answer “yes” iff  
i1, i2, .., in , 2*Sum(i1, i2, .., in ) – G,Sum(i1, i2, .., in ) + G 

has answer “yes” in Partition. Here we assume that  

G ≤ Sum(i1, i2, .., in ), for, if not, the answer is “no.” 

– Let i1, i2, .., in be an instance of Partition. This instance 

has answer “yes” iff  
i1, i2, .., in , Sum(i1, i2, .., in )/2  

has answer “yes” in SubsetSum 

11/18/2014 COT 4210 © UCF 276 



Integer Linear Programming 

• Show for 0-1 integer linear programming by constraining 

solution space. Start with an instance of SAT (or 3SAT), 

assuming variables v1,…, vn and clauses c1,…, cm 

• For each variable vi, have constraint that 0 ≤ vi ≤ 1 

• For each clause we provide a constraint that it must be 

satisfied (evaluate to at least 1). For example, if clause cj 

is v2 ∨ ~v3 ∨ v5 ∨ v6 then add the constraint  

v2 + (1-v3) + v5 + v6 ≥ 1 

• A solution to this set of integer linear constraints implies 

a solution to the instance of SAT and vice versa 
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2 Processor scheduling 

 The problem of optimally scheduling n tasks T1, T2, …, Tn onto 2 processors 

with an empty partial order < is the same as that of dividing a set of positive 

whole numbers into two subsets, such that the numbers are as close to 

evenly divided.  So, for example, given the numbers 

 3, 2, 4, 1 

 we could try a “greedy” approach as follows: 

 put 3 in set 1 

 put 2 in set 2 

 put 4 in set 2 (total is now 6) 

 put 1 in set 1 (total is now 4)  

 This is not the best solution.  A better option is to put 3 and 2 in one set and 

4 and 1 in the other.  Such a solution would have been attained if we did a 

greedy solution on a sorted version of the original numbers.  In general, 

however, sorting doesn’t work.  
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2 Processor nastiness 

 Try the unsorted list 

 7, 7, 6, 6, 5, 4, 4, 5, 4 

 Greedy (Always in one that is least used) 

 7, 6, 5, 5 = 23 

 7, 6, 4, 4, 4 = 25  

 Optimal 

 7, 6, 6, 5 = 24 

 7, 4, 4, 4, 5 = 24 

 Sort it 

 7, 7, 6, 6, 5, 5, 4, 4, 4  

 7, 6, 5, 4, 4 = 26 

 7, 6, 5, 4 = 22 

  Even worse than greedy unsorted  
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NP–Complete 

 Today, there are 1,000's of problems that have been 

proven to be NP–Complete. (See Garey and Johnson, 

Computers and Intractability: A Guide to the Theory 

of NP–Completeness, for a list of over 300 as of the 

early 1980's). 

 



P = NP? 

 If P = NP then all problems in NP are polynomial 

problems. 

 

 If P ≠ NP then all NP–C problems are exponential. 



P = NP? 

Why should P equal NP? 
 There seems to be a huge "gap" between the known 

problems in P and Exponential. That is, almost all known 
polynomial problems are no worse than n3 or n4.  
 

 Where are the O(n50) problems?? O(n100)? Maybe they are 
the ones in NP–Complete?  
 

 It's awfully hard to envision a problem that would require 
n100, but surely they exist? 
 

 Some of the problems in NP–C just look like we should be 
able to find a polynomial solution (looks can be deceiving, 
though).  



P ≠ NP? 

Why should P not equal NP? 
• P = NP would mean, for any problem in NP, that it is just 

as easy to solve an instance form "scratch," as it is to 
verify the answer if someone gives it to you. That seems 
a bit hard to believe. 

• There simply are a lot of awfully hard looking problems 
in NP–Complete (and Co–NP-Complete) and some just 
don't seem to be solvable in polynomial time. 

• Many very smart people have tried for a long time to find 
polynomial algorithms for some of the problems in NP-
Complete - with no luck. 



NP-Hard 

• A is NP-Hard if all NP problems polynomial 
reduce to A. 

• If A is NP-Hard and in NP, then A is NP-
Complete. 

• QSAT (Quantified SAT) is the problem to 
determine if an arbitrary fully quantified 
Boolean expression is true.  
Note: SAT only uses existential. 

• QSAT is NP-Hard, but may not be in NP. 

• QSAT can be solved in polynomial space 
(PSPACE). 



Co-NP 

• A problem is in co-NP if its complement is in 
NP – this is like co-RE, wrt RE problems. 

• An example is the problem to determine if a 
boolean expression is a tautology. 
– You can check an instance to see if it does not 

satisfy in polynomial time. 

– However, just because one satisfies is not enough 
to show all do. Counterexamples are easy, proofs 
seem to be hard. 

• The complement of satisfiability is to 
determine if an expression is self 
contradictory. 



Final Exam Topics 1 

• Regular languages 

– Finite State Automata: Deterministic and Non-Deterministic 

– Right Linear Grammars 

– Regular Expressions 

– Regular Equations 

– Right invariant equivalence relations of finite index 

– Equivalence of above six models  

– Closures: negation, union, exclusive or, concatenation, star, intersection, 

substitution, quotient, prefix, suffix, substring 

– MyHill-Nerode and minimum state DFA 

– Minimizing DFAs 

– Classic non-regular languages {0^n 1^n | n >= 0} 

– Pumping Lemma for Regular Languages 

– Notion of instantaneous descriptions of machines and grammars 

– Mealy and Moore Machines (automata with output) 
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Final Exam Topics 2 

• Context free languages 

– Context free grammars 

• Leftmost and rightmost derivations 

• Parse trees 

• Ambiguity 

– Closure: union, concatenation, star, substitution, intersection with regular, quotient, prefix, suffix, substring 

– Non-closure: intersection, complement, quotient) 

– Pumping Lemma for CFLs 

– Chomsky Normal Form 

• Remove non-generating non-terminals (and rules) 

• Remove unreachable non-terminals (and rules) 

• Remove lambda rules 

• Remove chain rules 

• Make right-hand sides match CNF constraints 

– CKY algorithm 

– Push-down automata 

– Various notions of acceptance and their equivalence 

– Deterministic vs non-deterministic 

– Equivalence to CFLs (Proof that every PDA recognized language is a CFL is off the table) 

– Top-down vs bottom up parsing 
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Final Exam Topics 3 

• Chomsky Hierarchy  

(Red involve no constructive questions) 

– Regular, CFG, CSG, PSG (type 3 to type 0) 

– FSAs, PDAs, LBAs, Turing machines 

– Length preservation or increase makes membership 

in associated languages decidable for all but PSGs 

– CFLs can be inherently ambiguous but that does not 

mean a language that has an ambiguous grammar is 

automatically inherently ambiguous 
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Final Exam Topics 4 

• Computability Theory 

– Decision problems: solvable (decidable, recursive), semi-

decidable (recognizable, recursively enumerable/re, generable), 

non-re 

– If set is re and complement is also re, set is recursive (decidable) 

– Halting problem (K0): diagonalization proof of undecidability 

• Set K0 is re but complement is not 

– Set K = { f | f(f) converges} 

– Algorithms (Total): diagonalization proof of non-re 

– Reducibility to show certain problems are not decidable or even 

non-re 

– Rice’s Theorem: All non-trivial I/O properties of functions are 

undecidable 
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Final Exam Topics 5 

• Computability  Applied to Formal Grammars  

(Red only results not constructions that lead to these) 

– Post Correspondence problem (PCP) 

• Definition 

• Undecidability (proof was not done and is not part of this course) 

• Application to ambiguity and non-emptiness of intersections of CFLs and to non-

emptiness of CSL 

– Traces of Turing computations 

• Not CFLs 

• Single steps are CFLs (use reversal of second configuration) 

• Intersections of pairwise correct traces are traces 

• Complement of traces (including terminating traces) are CFL 

• Use to show cannot decide if CFL, L, is * 

• L= * and L = L2 are undecidable 

– PSG can mimic TM, so generate any re language; thus, membership in PSL is 

undecidable, as is emptiness of PSL. 

– All re sets are homomorphic images of CSLs 
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Final Exam Topics 6 

• Complexity Theory 

– Verifiers versus solvers: P versus NP 

– Definitions of NP: verify in det poly time vs solve in 

non-det poly time 

– Co-P and co-NP; NP-Hard versus NP-Complete 

– Basic idea behind SAT as NP-Complete 

– Reduction of SAT to 3-SAT to Subset-Sum 

– Equivalence of Subset-Sum to Partition 

– Relation of Subset-Sum, Partition  

– Relation to multiprocessor scheduling 
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