COT 4210 Fall 2014 Midterm#1 Topics

- 1. Properties of sets, sequences, relations and functions
 - a. Basic notions
 - b. Proof techniques
- 2. Computability, complexity, languages
 - a. Basic notions
- 3. Finite state automata and Regular languages
 - a. Definitions: Deterministic and Non-Deterministic
 - b. Notions of state transitions, acceptance and language accepted
 - c. State diagrams and state tables
 - d. Construction from descriptions of languages
 - e. Closures: negation, union, exclusive or, negation
 - f. More closures: concatenation, star
 - g. More closures: Reverse, Prefix, Postfix, Substring
 - h. More yet: Max, Min
 - i. Conversion of NFA to DFA
 - i. λ -Closure -- E(s) and E(S)
 - ii. Subset construction
 - iii. Reachable states
 - iv. Reaching states
 - j. Minimizing DFAs (distinguishable states)
- 4. Regular expressions and Regular Sets
 - a. Definition of regular expressions and regular sets
 - b. Every regular sets is a regular language
 - c. Every regular language is a regular set
 - i. Ripping states (GNFA)
 - ii. Ri,j(k)
 - iii. Regular equations
 - 1. Uniqueness of solution to R=Q+RP
 - 2. Solving for expressions associated with states
- 5. Pumping Lemma
 - a. Classic non-regular languages $\{0^n 1^n | n \ge 0\}$
 - b. Formal statement and proof of Pumping Lemma for Regular Languages
 - c. Use of Pumping Lemma
- 6. Grammars
 - a. Definition of grammar and notions of derivation and language
 - b. Restricted grammars: Regular (right and left linear); context free
 - c. Why you can't mix right and left linear and stay in Regular domain.
 - d. Relation of regular grammars to finite state automata