1. Draw a DFA to recognize the set of strings over $\{\mathbf{a}, \mathbf{b}\}^{*}$ that contain the same number of occurrences of the substring $\mathbf{a b}$ as of the substring $\mathbf{b a}$.

2. Present the transition diagram or table for a DFA that accepts the regular set denoted by the expression $(\mathbf{0}+\mathbf{1})^{*}(\mathbf{0 1 0}+\mathbf{1 1})(\mathbf{0}+\mathbf{1})^{*}$

	$\mathbf{0}$	$\mathbf{1}$
$\langle\lambda\rangle$	$\langle 0\rangle$	$<1\rangle$
$\langle\mathbf{0}\rangle$	$\langle 0\rangle$	$<01\rangle$
$\langle\mathbf{0 1}\rangle$	$\langle 010+11\rangle$	$<010+11\rangle$
$\langle\mathbf{1}\rangle$	$\langle 0\rangle$	$<010+11\rangle$
$\langle\mathbf{0 1 0 + 1 1}\rangle$	$\langle 010+11\rangle$	$<010+11\rangle$

3. Consider the following assertion:

Let \mathbf{R} be a regular language, then any set \mathbf{S}, such that $\mathbf{S} \cup \mathbf{R}=\mathbf{S}$, is also regular.
State whether you believe this statement to be True or False by circling your answer.
TRUE
FALSE
If you believe that this assertion is True, present a convincing argument (not formal proof) to back up your conjecture. If you believe that it is False, present a counterexample using known regular and non-regular languages, \mathbf{R} and \mathbf{S}, respectively.

Let $\mathbf{R}=\phi$ and $\mathbf{S}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}} ; \mathbf{S} \cup \mathbf{R}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}=\mathbf{S}$, but S is not regular.
4. Assume that \mathbf{L}_{1} and $\mathbf{L}_{1} \cap \mathbf{L}_{\mathbf{2}}$ are both regular languages. Is $\mathbf{L}_{\mathbf{2}}$ necessarily a regular language? If so, prove this, otherwise show that \mathbf{L}_{2} could either be regular or non-regular.
\mathbf{L}_{2} could either be regular or non-regular
$\mathbf{L}_{\mathbf{2}}$ regular: $\mathbf{L}_{\mathbf{1}}=\phi ; \mathbf{L}_{\mathbf{2}}=\phi ; \mathbf{L}_{\mathbf{1}} \cap \mathbf{L}_{\mathbf{2}}=\phi$
$\mathbf{L}_{\mathbf{2}}$ non-regular: $\mathbf{L}_{\mathbf{1}}=\phi ; \mathbf{L}_{\mathbf{2}}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}} ; \mathbf{L}_{\mathbf{1}} \cap \mathbf{L}_{\mathbf{2}}=\phi$
5. Let \mathbf{L} be defined as the language accepted by the finite state automaton \mathbf{A} :

a.) Fill in the following table, showing the λ-closures for each of \mathbf{A} 's states.

State	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
λ-closure	$\{\mathbf{A}\}$	$\{\mathbf{B}, \mathbf{C}\}$	$\{\mathbf{C}\}$	$\{\mathbf{D}, \mathbf{E}\}$	$\{\mathbf{E}\}$

b.) Convert \mathbf{A} to an equivalent deterministic finite state automaton. Use states like $\mathbf{A C}$ to denote the subset of states $\{\mathbf{A}, \mathbf{C}\}$. Be careful $-\boldsymbol{\lambda}$-closures are important.

6. Let \mathbf{L} be defined as the language accepted by the finite state automaton \mathbf{A} :

Change \mathbf{A} to a GNFA (although I don't see the need for all those ϕ transitions). Now, using the technique of replacing transition letters by regular expressions and then ripping (collapsing) states, develop the regular expression associated with \mathbf{A} that represents the set (language) \mathbf{L}.

Note: $\left(0+1+00^{*} 1\right)\left(000^{*} 1+0+1+0(0+1)\right)^{*}=\left(0+1+0^{+} 1\right)(0+1)^{*}=(0+1)(0+1)^{*}+\left(0^{+} 1\right)(0+1)^{*}=(0+1)^{+}$
7. Let \mathbf{L} be defined as the language accepted by the finite state automaton \mathbf{A} :

Using the technique of regular equations, develop the regular expression associated with \mathbf{A} that represents the set (language) \mathbf{L}.

$$
\begin{aligned}
& A=\lambda+C 0 \\
& B=A 0+B 0 \\
& C=A(0+1)+B 1+C(0+1)
\end{aligned}
$$

$$
\begin{aligned}
B & =0+C 00+B 0=(0+C 00) 0^{*} \\
C & \left.=(0+1)+\mathrm{C} 0(0+1)+(0+\mathrm{C} 00) 0^{*} 1+\mathrm{C}(0+1)\right) \\
& =(0+1)+0^{+} 1+\mathrm{C}\left(00+01+0+1+00^{+} 1\right) \\
& =(0+1)+0^{+} 1+\mathrm{C}\left(00+0+1+0^{+} 1\right) \\
& =\left(0+1+0^{+} 1\right)\left(00+0+1+0^{+} 1\right)^{*} \\
& =\left(0+1+0^{+} 1\right)(0+1)^{*}=(0+1)^{+}
\end{aligned}
$$

8. Given a finite state automaton denoted by the transition table shown below, and assuming that $\mathbf{5}$ and $\underline{\mathbf{6}}$ are final states, fill in the equivalent states matrix I have provided. Use this to create an equivalent, minimal state automaton. State $\mathbf{1}$ is the start state.

		a
>1	4	c

Don't forget to construct and write down your new, equivalent automaton!!

c
9. Use the Pumping Lemma to show that the following languages are not regular:
a.) $L=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{m}} \mathbf{c} \mathbf{t} \mid \mathbf{n}>\mathbf{m}\right.$ or $\mathbf{n}>\mathbf{t}$, and $\left.\mathbf{n}, \mathbf{m}, \mathbf{t} \geq \mathbf{0}\right\}$

Let \mathbf{N} be given by the P.L.
Choose $\mathbf{w}=\mathbf{a}^{\mathbf{N}+1} \mathbf{b}^{\mathbf{N}} \mathbf{c}^{\mathbf{N}}$ Clearly $\mathbf{w} \in \mathbf{L}$
Let $\mathbf{w}=\mathbf{x y z},|\mathbf{x y}| \leq \mathbf{N},|\mathbf{y}|>\mathbf{0}$ be given by the P.L.
By P.L., $\mathbf{x y}^{\mathbf{i}} \mathbf{z} \in \mathbf{L}$, for all $\mathbf{i} \geq \mathbf{0}$
Let $\mathbf{i}=\mathbf{0}$, then P.L. requires that $\mathbf{x z} \in \mathbf{L}$
However, since $|\mathbf{x y}| \leq \mathbf{N}$, then \mathbf{y} is a non-empty string consisting of only \mathbf{a} 's.
Thus, we have that $\mathbf{a}^{\mathbf{N}+1-|y|} \mathbf{b}^{\mathbf{N}} \mathbf{c}^{\mathbf{N}} \in \mathbf{L}$.
But, this is not so, since $\mathbf{N + 1 - | y |} \mid \leq \mathbf{N}$ and hence the number of \mathbf{a} 's is not greater than either of the number of \mathbf{b} 's or \mathbf{c} 's. This proves that L cannot be regular.
b.) $L=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{m}} \mid \mathbf{n} \leq \mathbf{m}\right.$, and $\left.\mathbf{n}, \mathbf{m} \geq \mathbf{0}\right\}$

Let \mathbf{N} be given by the P.L.
Choose $\mathbf{w}=\mathbf{a}^{\mathbf{N}} \mathbf{b}^{\mathbf{N}}$ Clearly $\mathbf{w} \in \mathbf{L}$
Let $\mathbf{w}=\mathbf{x y z},|\mathbf{x y}| \leq \mathbf{N},|\mathbf{y}|>\mathbf{0}$ be given by the P.L.
By P.L., $\mathbf{x y}^{\mathbf{i}} \mathbf{z} \in \mathbf{L}$, for all $\mathbf{i} \geq \mathbf{0}$
Let $\mathbf{i = 2}$, then P.L. requires that $\mathbf{x y} \mathbf{} \mathbf{}^{\mathbf{z}} \in \mathbf{L}$
However, since $|\mathbf{x y}| \leq \mathbf{N}$, then \mathbf{y} is a non-empty string consisting of only \mathbf{a} 's.
Thus, we have that $\mathbf{a}^{\mathbf{N}+|y|} \mathbf{b}^{\mathbf{N}} \in \mathbf{L}$.
But, this is not so, since $\mathbf{N}+|\mathbf{y}|>\mathbf{N}$ and hence the number of a's is greater than the number of \mathbf{b} 's.
This proves that L cannot be regular.
c. \quad Let NonPrime $=\left\{\mathbf{a}^{\mathbf{q}} \mid \mathbf{q}\right.$ is not a prime $\}$

This language is not easily shown non-regular using the Pumping Lemma. However, we already saw in class how to prove that Prime $=\left\{\mathbf{a}^{\mathbf{p}} \mid \mathbf{p}\right.$ is a prime $\}$ is non-regular using the Pumping Lemma. Explain how you could use this latter fact to show NonPrime is non-regular.

As regular languages are closed under complement, a demonstration that NonPrime is regular could be used to show Prime is also regular, but that is already known to be false, so NonPrime must itself be non-regular.
10. DFAs accept the class of regular languages. Regular expressions denote the class of regular sets. The equivalence of these is seen by a proof that every regular set is a regular language and vice versa. The first part of this, that every regular set is a regular language, can be done by first showing that the basis regular sets $\left(\boldsymbol{\emptyset},\{\boldsymbol{\lambda}\},\left\{\mathbf{a} \mid \mathbf{a} \in \sum\right\}\right)$ are each accepted by a DFA.
i.) Demonstrate a DFA for each of the basis regular sets.

\emptyset

$\{\lambda\}$

\{a \}

Let $\mathbf{L}_{\mathbf{1}}$ be generated by the DFA $\mathbf{A}_{\mathbf{1}}=\left(\mathbf{Q}_{\mathbf{1}}, \Sigma, \boldsymbol{\delta}_{\mathbf{1}}, \mathbf{q}_{\mathbf{1}}, \mathbf{F}_{\mathbf{1}}\right)$ and $\mathbf{L}_{\mathbf{2}}$ be generated by the DFA $\mathbf{A}_{\mathbf{2}}=\left(\mathbf{Q}_{\mathbf{2}}, \Sigma, \boldsymbol{\delta}_{\mathbf{2}}, \mathbf{q}_{\mathbf{2}}, \mathbf{F}_{\mathbf{2}}\right)$.
ii.) Present a construction from $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}$ that produces a DFA $\mathbf{A}_{\mathbf{3}}$ for $\mathbf{L}_{\mathbf{1}} \cup \mathbf{L}_{\mathbf{2}}$.

Hint: Cross product.
$\mathbf{A}_{3}=\left(\mathbf{Q}_{1} \times \mathbf{Q}_{2}, \sum, \delta_{3},\left\langle\mathbf{q}_{1}, \mathbf{q}_{2}\right\rangle, \mathbf{F}_{3}\right)$.
$\delta_{\mathbf{3}}(\langle\mathbf{q}, \mathrm{r}\rangle, \mathbf{a})=\left\langle\delta_{\mathbf{1}}(\mathbf{q}, \mathbf{a}), \delta_{\mathbf{2}}(\mathbf{r}, \mathbf{a})\right\rangle$ where $\mathrm{q} \in \mathbf{Q}_{\mathbf{1}} ; \mathbf{r} \in \mathbf{Q}_{\mathbf{2}}$; and $\mathbf{a} \in \Sigma$
$\mathbf{F}_{3}=\mathbf{F}_{1} \times \mathbf{Q}_{2} \cup \mathbf{Q}_{1} \times \mathbf{F}_{\mathbf{2}}$
Clearly $\delta_{3}{ }^{*}\left(\left\langle\mathbf{q}_{1}, \mathbf{q}_{2}\right\rangle, \mathbf{w}\right)=\left\langle\delta_{1} *\left(\mathbf{q}_{1}, \mathbf{w}\right), \delta_{2} *\left(\mathbf{q}_{\mathbf{2}}, \mathbf{w}\right)\right\rangle$
And thus $\mathbf{w} \in \mathbf{L}_{\mathbf{3}}$, just in case $\mathbf{w} \in \mathbf{L}_{\mathbf{1}}$ or $\mathbf{w} \in \mathbf{L}_{\mathbf{2}}$
iii.) What remains to be done to show that every regular set is a regular language? Don't do the proof, just state what two steps still needs to be done.
Present a construction from $\mathbf{A}_{\mathbf{1}}$ and $\mathbf{A}_{\mathbf{2}}$ that produces a DFA for $\mathbf{L}_{\mathbf{1}} \mathbf{L}_{\mathbf{2}}$. This is generally not done directly but by first showing NFAs are equivalent to DFAs and then producing a NFA for $\mathbf{L}_{\mathbf{1}} \mathbf{L}_{\mathbf{2}}$.

Present a construction from $\mathbf{A}_{\mathbf{1}}$ that produces a DFA for $\mathbf{L}_{\mathbf{1}}$. This is generally not done directly but by first showing NFAs are equivalent to DFAs and then producing a NFA for $\mathbf{L}_{\mathbf{1}}{ }^{*}$.

