COT 4210

1. Draw a DFA to recognize the set of strings over $\{\mathbf{a}, \mathbf{b}\}^{*}$ that contain the same number of occurrences of the substring $\mathbf{a b}$ as of the substring $\mathbf{b a}$.
2. Present the transition diagram or table for a DFA that accepts the regular set denoted by the expression $(\mathbf{0}+\mathbf{1})^{*}(\mathbf{0 1 0}+\mathbf{1 1})(\mathbf{0}+\mathbf{1})^{*}$
3. Consider the following assertion:

Let \mathbf{R} be a regular language, then any set \mathbf{S}, such that $\mathbf{S} \cup \mathbf{R}=\mathbf{S}$, is also regular.
State whether you believe this statement to be True or False by circling your answer.
TRUE
FALSE
If you believe that this assertion is True, present a convincing argument (not formal proof) to back up your conjecture. If you believe that it is False, present a counterexample using known regular and non-regular languages, \mathbf{R} and \mathbf{S}, respectively.
4. Assume that \mathbf{L}_{1} and $\mathbf{L}_{1} \cap \mathbf{L}_{\mathbf{2}}$ are both regular languages. Is $\mathbf{L}_{\mathbf{2}}$ necessarily a regular language? If so, prove this, otherwise show that \mathbf{L}_{2} could either be regular or non-regular.
5. Let \mathbf{L} be defined as the language accepted by the finite state automaton \mathbf{A} :

a.) Fill in the following table, showing the λ-closures for each of A's states.

State	A	B	C	D	E
λ-closure	$\{\quad\}$	$\{$	$\}$	$\{$	$\}$

b.) Convert \mathbf{A} to an equivalent deterministic finite state automaton. Use states like $\mathbf{A C}$ to denote the subset of states $\{\mathbf{A}, \mathbf{C}\}$. Be careful $-\boldsymbol{\lambda}$-closures are important.
6. Let \mathbf{L} be defined as the language accepted by the finite state automaton \mathbf{A} :

Change \mathbf{A} to a GNFA (although I don't see the need for all those ϕ transitions). Now, using the technique of replacing transition letters by regular expressions and then ripping (collapsing) states, develop the regular expression associated with \mathbf{A} that represents the set (language) \mathbf{L}.
7. Let \mathbf{L} be defined as the language accepted by the finite state automaton \mathbf{A} :

Using the technique of regular equations, develop the regular expression associated with \mathbf{A} that represents the set (language) \mathbf{L}.
8. Given a finite state automaton denoted by the transition table shown below, and assuming that $\mathbf{5}$ and $\underline{\mathbf{6}}$ are final states, fill in the equivalent states matrix I have provided. Use this to create an equivalent, minimal state automaton. The start state is $\mathbf{1}$.

Don't forget to construct and write down your new, equivalent automaton!!
9. Use the Pumping Lemma to show that the following languages are not regular:
a.) $L=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{m}} \mathbf{c}^{\mathbf{t}} \mid \mathbf{n}>\mathbf{m}\right.$ or $\mathbf{n}>\mathbf{t}$, and $\left.\mathbf{n}, \mathbf{m}, \mathbf{t} \geq \mathbf{0}\right\}$
b.) $L=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{m}} \mid \mathbf{n} \leq \mathbf{m}\right.$, and $\left.\mathbf{n}, \mathbf{m} \geq \mathbf{0}\right\}$
c. \quad Let NonPrime $=\left\{\mathbf{a}^{\mathbf{q}} \mid \mathbf{q}\right.$ is not a prime $\}$

This language is not easily shown non-regular using the Pumping Lemma. However, we already saw in class how to prove that Prime $=\left\{\mathbf{a}^{\mathbf{p}} \mid \mathbf{p}\right.$ is not a prime $\}$ is non-regular using the Pumping Lemma. Explain how you could use this latter fact to show NonPrime is non-regular.
10. DFAs accept the class of regular languages. Regular expressions denote the class of regular sets. The equivalence of these is seen by a proof that every regular set is a regular language and vice versa. The first part of this, that every regular set is a regular language, can be done by first showing that the basis regular sets $\left(\boldsymbol{\varnothing},\{\boldsymbol{\lambda}\},\left\{\mathbf{a} \mid \mathbf{a} \in \sum\right\}\right)$ are each accepted by a DFA.
i.) Demonstrate a DFA for each of the basis regular sets.

Ø
$\{\lambda\}$
\{a \}

Let $\mathbf{L}_{\mathbf{1}}$ be generated by the DFA $\mathbf{A}_{\mathbf{1}}=\left(\mathbf{Q}_{\mathbf{1}}, \sum, \boldsymbol{\delta}_{\mathbf{1}}, \mathbf{q}_{\mathbf{1}}, \mathbf{F}_{\mathbf{1}}\right)$ and $\mathbf{L}_{\mathbf{2}}$ be generated by the DFA $\mathbf{A}_{2}=\left(\mathbf{Q}_{2}, \sum, \boldsymbol{\delta}_{\mathbf{2}}, \mathbf{q}_{2}, \mathbf{F}_{\mathbf{2}}\right)$.
ii.) Present a construction from $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}$ that produces a DFA $\mathbf{A}_{\mathbf{3}}$ for $\mathbf{L}_{\mathbf{1}} \cup \mathbf{L}_{\mathbf{2}}$. Hint: Cross product.
iii.) What remains to be done to show that every regular set is a regular language? Don't do the proof; just state what two steps still need to be done.

