Generally useful information.
· The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2. 
· The minimization notation  y [P(…,y)] means the least y (starting at 0) such that P(…,y) is true. The bounded minimization (acceptable in primitive recursive functions) notation 
 y (uyv) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true. Unlike the text, I find it convenient to define  y (uyv) [P(…,y)] to be v+1, when no y satisfies this bounded minimization. 
· The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and predicate ~P(x) is the logical complement of predicate P(x).
· The minus symbol, –, when applied to sets is set difference, so S – T = {x | xS && xT}.
· The absolute value, |z|, is the magnitude of z. Thus, |x-y| is the difference between x and y, when x and y are both non-negative.
· A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and false is 0 in formulas like y  P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)).
· A set S is recursive if S has a total recursive characteristic function S, such that x  S   S(x). Note S is a predicate. Thus, it evaluates to 0 (false), if x  S.
· When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following equivalent characterizations:
1. S is either empty or the range of a total recursive function fS.
2. S is the domain of a partial recursive function gS.
3. S is recognizable by a Turing Machine.
· If I say a function g is partially computable, then there is an index g (I know that’s overloading, but that’s okay as long as we understand each other), such that g(x) = (g, x) = g(x). Here  is a universal partially recursive function. 
Moreover, there is a total recursive function STP, such that 
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps. 
STP(g, x, t) is 0 (false), otherwise. 
Finally, there is another total recursive function VALUE, such that 
VALUE(g. x, t) is g(x), whenever STP(g, x, t). 
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t).
· The notation f(x) means that f converges when computing with input x, but we don’t care about the value produced. In effect, this just means that x is in the domain of f.
· The notation f(x) means f diverges when computing with input x. In effect, this just means that x is not in the domain of f.
· The Halting Problem for any effective computational system is the problem to determine of an arbitrary effective procedure f and input x, whether or not f(x). The set of all such pairs is a classic re non-recursive one. The set of all such <f,x> is denoted K0. A related set K is the set of all f that halt on their own indices. Thus, K = { f | f(f)  } and K0 = {<f,x>|f(x) }
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· The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f, whether or not f is an algorithm (halts on all input). The set of all such function indices is a classic non re one and is often called TOTAL.
COT 4210	Fall 2014	Final Exam Sample Questions

	1.	Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by listing all possible categories. No justification is required.
a.)	D = ~C		RE, NR								
b.)	D  (AC)		REC, RE, NR								
c.)	D = ~B	 		NR									
d.)	D = B  A		REC, RE								
	2.	Prove that the Halting Problem (the set K0 ) is not recursive (decidable) within any formal model of computation. (Hint: A diagonalization proof is required here.) 
Assume we can decide the halting problem.  Then there exists some total function Halt such that
				1 	if [x] (y) is defined
	Halt(x,y) 	=
 	 			0 	if [x] (y) is not defined
Here, we have numbered all programs and [x] refers to the x-th program in this ordering.  We can view Halt as a mapping from  into   by treating its input as a single number representing the pairing of two numbers via the one-one onto function
	pair(x,y) = <x,y> = 2x  (2y + 1) – 1
	with inverses	
		<z>1 = exp(z+1,1)
	
	<z>2 = ((( z + 1 ) // 2 <z>1  ) – 1 ) // 2
Now if Halt exist, then so does Disagree, where
			0 			if Halt(x,x) = 0, i.e, if x (x) is not defined
	Disagree(x) =
 	 		y (y == y+1) 	if Halt(x,x) = 1, i.e, if x (x) is defined
Since Disagree is a program from  into   , Disagree can be reasoned about by Halt.  Let d be such that Disagree = d, then
	Disagree(d) is defined  Halt(d,d) = 0  d (d) is undefined  Disagree(d) is undefined
But this means that Disagree contradicts its own existence.  Since every step we took was constructive, except for the original assumption, we must presume that the original assumption was in error.  Thus, the Halting Problem is not solvable.

	3.	Using reduction from the known undecidable HasZero, HZ = { f | x f(x) = 0 }, show the non-recursiveness (undecidability) of the problem to decide if an arbitrary primitive recursive function g has the property IsZero, Z = { f | x f(x) = 0 }.
HZ = { f | x t [ STP(f, x, t) & VALUE(f, x, t) == 0] }
Let f be the index of an arbitrary effective procedure.
Define gf(y) = 1 -  x t [ STP(f, x, t) & VALUE(f, x, t) == 0]
If x f(x) = 0, we will find the x and the run-time t, and so we will return 0 (1 – 1)
If x f(x)  0, then we will diverge in the search process and never return a value.
Thus, f  HZ iff gf  Z = { f | x f(x) = 0 }.
	4.	Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the following decision problems. No proofs are required. 

	Problem / Language Class
	Regular
	Context Free

	L = * ?
	D
	U

	L =  ?
	D
	D

	x   L2, for arbitrary x ?
	D
	D


	5.	Choosing from among (Y) yes, (N) No, (?) unknown, categorize each of the following closure properties. No proofs are required. 

	Problem / Language Class
	Regular
	Context Free

	Closed under intersection?
	Y
	N

	Closed under quotient?
	Y
	N

	Closed under quotient with Regular languages?
	Y
	Y

	Closed under complement?
	Y
	N





	6.	Prove that any class of languages, C, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under MissingMiddle, where, assuming L is over the alphabet ,
MissingMiddle(L) = { xz | y  * such that xyz  L }
You must be very explicit, describing what is produced by each transformation you apply.
Define the alphabet ’ = { a’ | a }, where, of course, a’ is a “new” symbol, i.e., one not in .
Define homomorphisms g and h, and substitution f as follows:
g(a) = a’ 	a		h(a) = a  ;   h(a’) = 	a		f(a) = {a, a’ }	a

Consider R = *   g(*)  * = { x y’ z | x, y, z  *  and  y’=g(y) ’* }
* is regular since it is the Kleene star closure of a finite set.
g(*) is regular since it is the homomorphic image of a regular language.
R is regular as it is the concatenation of regular languages.

Now, f(L) = { f(w) | w  L } is in C since C is closed under substitution. This language is the set of strings in L with randomly selected letters primed. Any string wL gives rise to 2|w| strings in f(L).

f(L)  R = { x y’ z | x y z  L and y’=g(y) } is in C since C is closed under intersection with regular languages.

MissingMiddle(L) = h(  f(L)  R ) = { x z | y  * such that xyz  L } which is in C, since C is closed under homomorphism. Q.E.D.
	7.	Use PCP to show the undecidability of the problem to determine if the intersection of two context free languages is non-empty. That is, show how to create two grammars GA and GB based on some instance P = <<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA)  L(GB)   iff P has a solution. Assume that P is over the alphabet .You should discuss what languages your grammars produce and why this is relevant, but no formal proof is required.
GA = ( { A } ,   { [ i ]  | 1≤i≤n } , A , PA }		GB = ( { B } ,   { [ i ]  | 1≤i≤n } , B , PB }
PA : A  xi A [ i ]  |  xi [ i ]				PB : A  yi B [ i ]  |  yi [ i ]
L(GA) = { xi1  xi2 … xip  [ip] … [i2] [i1]   | p  1, 1 ≤ it ≤ n, 1 ≤ t  ≤ p  }
L(GB) = { yj1  yj2 … yjq  [jq] … [j2] [j1]   | q  1, 1 ≤ ju ≤ n, 1 ≤ u  ≤ q  }
L(GA)    L(GB) = { w  [kr] … [k2] [k1]   | r  1, 1 ≤ kv ≤ n, 1 ≤ v  ≤ r  }, where
w = xk1 xk2 … xkr  =  yk1 yk2 … ykr  
If L(GA)    L(GB)   then such a w exists and thus k1 , k2 , … , kr is a solution to this instance of PCP. This shows that a decision procedure for the non-emptiness of the intersection of CFLs implies a decision procedure for PCP, which we have already shown is undecidable. Hence, the non-emptiness of the intersection of CFLs is undecidable.  Q.E.D.

	8.	Consider the set of indices CONSTANT = { f | K y [ f(y) = K ] }. Use Rice’s Theorem to show that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated.

First, show CONSTANT is non-trivial.
	Z(x) = 0 is in CONSTANT
	S(x) = x+1 is not in CONSTANT
	Thus, CONSTANT is non-trivial

Second, let f, g be two arbitrary computable functions with the same I/O behavior.
	That is, x, if f(x) is defined, then f(x) = g(x); otherwise both diverge, i.e., f(x) and g(x)
	Now, f  CONSTANT 
 K x  [ f(x) = K ] 	 by definition of CONSTANT
 x [ g(x) = C ]		where C is the instance of K above, since x [  f(x) = g(x) ]
 K x [ g(x) = K ] 	from above
 g  CONSTANT	by definition of CONSTANT

Since CONSTANT meets both conditions of Rice’s Theorem, it is undecidable.  Q.E.D.

	9.	Show that CONSTANT m TOT, where TOT = { f | y f(y) }.

CONSTANT ≤m TOT 
Let f be an arbitrary effective procedure.
	Define gf by
gf (0) = f(0)
gf (y+1) = f(y+1) +  z  [f(y+1) = f(y) ]
	Now, if f  CONSTANT then y [ f(y)  and  [ f(y+1) = f(y) ] ]. 
Under this circumstance,  z [f(y+1) = f(y) ] is 0 for all y and gf (y) = f(y) for all y. 
Clearly, then gf  TOT
	If, however, f  CONSTANT then y [f(y+1)  f(y) ] and thus, y f(y). 
	Choose the least y meeting this condition. 
If f(y)  then gf (y) since f(y) is in gf (y)’s definition (the 1st  term).
If f(y)  but  [f(y+1)  f(y)] then gf (y) since  z [ f(y+1) = f(y) ] (the 2nd  term).
Clearly, then gf  TOT
Combining these, f  CONSTANT   gf  TOT and thus CONSTANT ≤m TOT

TOT  ≤m CONSTANT 
Let f be an an arbitrary effective procedure.
	Define gf by
gf (y) = f(y) – f(y)
	Now, if f  TOT then y [ f(y) ] and thus y gf (y) = 0 . Clearly, then gf  CONSTANT
	If, however, f  TOT then y [f(y) ] and thus, y [gf (y)]. Clearly , then gf  CONSTANT
Combining these, f  TOT   gf  CONSTANT and thus TOT  ≤m CONSTANT

Hence, CONSTANT m TOT.  Q.E.D.


	10.	Why does Rice’s Theorem have nothing to say about each of the following? Explain by showing some condition of Rice’s Theorem that is not met by the stated property. 
		a.) AT-LEAST-LINEAR = { f | y f(y) converges in no fewer than y steps }.

We can deny the 2nd condition of Rice’s Theorem since
Z, where Z(x) = 0, implemented by the TM R converges in one step no matter what x is and hence is not in AT-LEAST-LINEAR
Z’, defined by TM R L R, is in AT-LEAST-LINEAR since takes over 2*|input| steps.

However, x [ Z(x) = Z’(x) ], so they have the same I/O behavior and yet one is in and the other is out of AT-LEAST-LINEAR, denying the 2nd condition of Rice’s Theorem

		b.) HAS-IMPOSTER = { f |  g [ g≠f  and y [ g(y) = f(y) ] ] }.

We can deny the 1st condition of Rice’s Theorem since all functions have an imposter. To see this, consider, for any function f, the equivalent but distinct function g(x) = f(x) + 0. Thus, HAS-IMPOSTER is trivial since it is equal to , the set of all indices.
	11.	We described the proof that 3SAT is polynomial reducible to Subset-Sum. 
a.) Describe Subset-Sum
Given a sequence of n positive integers, <i1,…in> and a goal, G, which is also a  positive integer, is there a subset of the integers from the sequence that sums to the goal value?
b.) Show that Subset-Sum is in NP
[bookmark: _GoBack]Give a proposed solutions we can check if their sum equals G in linear time. Any decision problem where a solution can be verified in linear time is in NP, so we are done.
c.) Assuming a 3SAT expression (a + ~b + c) (b + b + ~c), fill in the upper right part of the reduction from 3SAT to Subset-Sum.

	
	a
	b
	c
	a + ~b + c
	b + b + ~c

	a
	1
	
	
	1
	

	~a
	1
	
	
	
	

	b
	
	1
	
	
	1 or 2

	~b
	
	1
	
	1
	

	c
	
	
	1
	1
	

	~c
	
	
	1
	
	1

	C1
	
	
	
	1
	

	C1’
	
	
	
	1
	

	C2
	
	
	
	
	1

	C2’
	
	
	
	
	1

	
	1
	1
	1
	3
	3




	12.	Use the appropriate Pumping Lemmas to show:
a.) { ww | w is over {a,b} } is not Regular

Assume the language L = { ww | w is over {a,b} } is Regular. Let N>0 be the value associated with L by the Pumping Lemma for Regular languages.
aNbaNb  L.
By Pumping Lemma, aNbaNb = xyz, for some strings x,y,z over {a,b}, 
where |y| > 0, |xy| ≤ N and i≥0 xyiz  L. Because |xy| ≤ N, y is a string in {a}+.
Let i=0, then xyiz = xz = aN-|y|baNb. Since |y|>0, there are fewer a’s preceding the first b in the string than preceding the second one, so it is not in L contradicting the Pumping Lemma.

b.) { ww | w is over {a,b} } is not Context Free

Assume the language L = { ww | w is over {a,b} } is Context Free. Let N>0 be the value associated with L by the Pumping Lemma for Context Free languages.
aNbNaNbN  L.
By Pumping Lemma, aNbNaNbN = uvwxy, for some strings u,v,w,x,y over {a,b}, 
where |vx| > 0, |vwx| ≤ N and i≥0 uviwxiy  L.
All cases collapse into the following analysis. vwx must include at most one of the ‘a’ sequences and at most one of the ‘b’ sequences; moreover it must have at least one of these cases (first ‘a’ sequence but not second; first ‘b’ sequence but not second; second ‘a’ sequence but not first; or second ‘b’ sequence but not first). Set i=0 and we have removed letters from one of the ‘a’ sequences and/or one of the ‘b’ sequences, but not the other. This denies that uwy is in L, thereby contradicting the Pumping Lemma.

13. Write a context-sensitive grammar for the complement of { ww | w is over {a,b} }
S 		 L<Odd> | AB | BA
<Odd>	 L<Even> | 
<Even>	 L<Odd> 
A 		 L A L | a
B		 L B L | b
L		 a | b


