Generally useful information.

- The notation $\mathbf{z} = \langle \mathbf{x}, \mathbf{y} \rangle$ denotes the pairing function with inverses $\mathbf{x} = \langle \mathbf{z} \rangle_1$ and $\mathbf{y} = \langle \mathbf{z} \rangle_2$.
- The minimization notation µ y [P(...,y)] means the least y (starting at 0) such that P(...,y) is true. The bounded minimization (acceptable in primitive recursive functions) notation µ y (u≤y≤v) [P(...,y)] means the least y (starting at u and ending at v) such that P(...,y) is true. Unlike the text, I find it convenient to define µ y (u≤y≤v) [P(...,y)] to be v+1, when no y satisfies this bounded minimization.
- The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and predicate ~P(x) is the logical complement of predicate P(x).
- The minus symbol, –, when applied to sets is set difference, so $S T = \{x \mid x \in S \& \& x \notin T\}$.
- The absolute value, |z|, is the magnitude of z. Thus, |x-y| is the difference between x and y, when x and y are both non-negative.
- A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and false is 0 in formulas like y × P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)).
- A set S is recursive if S has a total recursive characteristic function χ_s, such that x ∈ S ⇔ χ_s(x). Note χ_s is a predicate. Thus, it evaluates to 0 (false), if x ∉ S.
- When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following equivalent characterizations:
 - 1. S is either empty or the range of a total recursive function f_s .
 - 2. S is the domain of a partial recursive function g_s .
 - 3. **S** is recognizable by a Turing Machine.

If I say a function g is partially computable, then there is an index g (I know that's overloading, but that's okay as long as we understand each other), such that Φ_g(x) = Φ(g, x) = g(x). Here Φ is a universal partially recursive function. Moreover, there is a total recursive function STP, such that STP(g. x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps. STP(g. x, t) is 0 (false), otherwise. Finally, there is another total recursive function VALUE, such that VALUE(g. x, t) is g(x), whenever STP(g. x, t). VALUE(g. x, t) is defined but meaningless if ~STP(g. x, t).

- The notation $\mathbf{f}(\mathbf{x}) \downarrow$ means that \mathbf{f} converges when computing with input \mathbf{x} , but we don't care about the value produced. In effect, this just means that \mathbf{x} is in the domain of \mathbf{f} .
- The notation **f**(**x**)↑ means **f** diverges when computing with input **x**. In effect, this just means that **x** is **not** in the domain of **f**.
- The **Halting Problem** for any effective computational system is the problem to determine of an arbitrary effective procedure **f** and input **x**, whether or not $\mathbf{f}(\mathbf{x})\downarrow$. The set of all such pairs is a classic re non-recursive one. The set of all such $\langle \mathbf{f}, \mathbf{x} \rangle$ is denoted \mathbf{K}_0 . A related set **K** is the set of all **f** that halt on their own indices. Thus, $\mathbf{K} = \{\mathbf{f} \mid \Phi_{\mathbf{f}}(\mathbf{f})\downarrow\}$ and $\mathbf{K}_0 = \{\langle \mathbf{f}, \mathbf{x} \rangle \mid \Phi_{\mathbf{f}}(\mathbf{x})\downarrow\}$
- The **Uniform Halting Problem** is the problem to determine of an arbitrary effective procedure **f**, whether or not **f** is an algorithm (halts on all input). The set of all such function indices is a classic non re one and is often called **TOTAL**.

COT 4210 Fall 2014 Final Exam Sample Questions

1. Let set **A** be recursive, **B** be re non-recursive and **C** be non-re. Choosing from among (**REC**) recursive, (**RE**) re non-recursive, (**NR**) non-re, categorize the set **D** in each of a) through d) by listing **all** possible categories. No justification is required.

- 2. Prove that the **Halting Problem** (the set K_0) is not recursive (decidable) within any formal model of computation. (Hint: A diagonalization proof is required here.)
- 3. Using reduction from the known undecidable HasZero, $HZ = \{ f | \exists x f(x) = 0 \}$, show the non-recursiveness (undecidability) of the problem to decide if an arbitrary primitive recursive function g has the property IsZero, $Z = \{ f | \forall x f(x) = 0 \}$.
- 4. Choosing from among (**D**) decidable, (**U**) undecidable, (?) unknown, categorize each of the following decision problems. No proofs are required.

Problem / Language Class	Regular	Context Free
$L = \Sigma^*$?		
$\mathbf{L} = \boldsymbol{\phi}$?		
$x \in L^2$, for arbitrary x ?		

5. Choosing from among (Y) yes, (N) No, (?) unknown, categorize each of the following closure properties. No proofs are required.

Problem / Language Class	Regular	Context Free
Closed under intersection?		
Closed under quotient?		
Closed under quotient with Regular languages?		
Closed under complement?		

COT 4210 -3 - Fall 2014: Sample Final Questions – Hughes
6. Prove that any class of languages, C, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under MissingMiddle, where, assuming L is over the alphabet Σ,

 $MissingMiddle(L) = \{ xz \mid \exists y \in \Sigma^* \text{ such that } xyz \in L \}$

You must be very explicit, describing what is produced by each transformation you apply.

- 7. Use PCP to show the undecidability of the problem to determine if the intersection of two context free languages is non-empty. That is, show how to create two grammars G_A and G_B based on some instance $P = \langle x_1, x_2, ..., x_n \rangle$, $\langle y_1, y_2, ..., y_n \rangle$ of PCP, such that $L(G_A) \cap L(G_B) \neq \phi$ iff P has a solution. Assume that P is over the alphabet Σ . You should discuss what languages your grammars produce and why this is relevant, but no formal proof is required.
- 8. Consider the set of indices **CONSTANT** = { $\mathbf{f} \mid \exists \mathbf{K} \forall \mathbf{y} [\phi_{\mathbf{f}}(\mathbf{y}) = \mathbf{K}]$ }. Use Rice's Theorem to show that **CONSTANT** is not recursive. Hint: There are two properties that must be demonstrated.
- 9. Show that **CONSTANT** \equiv_m **TOT**, where **TOT** = { **f** | $\forall y \phi_f(y) \downarrow$ }.
- **10.** Why does Rice's Theorem have nothing to say about each of the following? Explain by showing some condition of Rice's Theorem that is not met by the stated property.

a.) AT-LEAST-LINEAR = { $f \mid \forall y \phi_f(y)$ converges in no fewer than y steps }.

b.) HAS-IMPOSTER = { $\mathbf{f} \mid \exists g [g \neq f \text{ and } \forall y [\varphi_g(y) = \varphi_f(y)]]$ }.

11. We described the proof that **3SAT** is polynomial reducible to Subset-Sum.

- a.) Describe **Subset-Sum**
- b.) Show that **Subset-Sum** is in **NP**

c.) Assuming a **3SAT** expression (a + ab + c) (b + b + ac), fill in the upper right part of the reduction from **3SAT** to **Subset-Sum**.

	a	b	с	a + ~b + c	b + b + ~ c
a	1				
~a	1				
b		1			
~b		1			
с			1		
~c			1		
C1				1	
C1'				1	
C2					1
C2'					1
	1	1	1	3	3

- **12.** Use the appropriate Pumping Lemmas to show:
 - a.) { ww | w is over {a,b} } is not Regular
 - b.) { ww | w is over {a,b} } is not Context Free

13. Write a context-free grammar for the complement of the language { ww | w is in {a,b}* }