Present a Mealy Model finite state machine that reads an input x ∈ {0, 1}* and produces the binary number that represents the result of adding the twos complement representation of decimal -6, that is adding binary 1...1010 to x (this assumes all numbers are in two's complement notation, including results). Assume that x is read starting with its least significant digit.

Name:

Examples: 00010 → 11100; 11001 → 10011; 01011 → 00101

2.

a.) Let **L** be defined as the language accepted by the finite state automaton $A=({A,B,C}, {0,1}, \delta, A, {C})$:

Present a right linear grammar that generates the language L.

 $A \rightarrow 0A / 0B / 1C$ $B \rightarrow 1C$ $C \rightarrow 0A / \lambda$

b.) Consider the regular grammar $\mathbf{G} = (\{\mathbf{S}, \mathbf{A}, \mathbf{B}\}, \{\mathbf{0}, \mathbf{1}\}, \mathbf{R}, \mathbf{S})$, where **R** is:

0

Present an automaton **A** that accepts the language generated by the **G**: $A=(\{S,A,B,C\},\{0,1\},\delta,S,\{A,C\})$ where δ is:

I'll do in class. It's easy.

3. Assuming you have computed the sets, $\mathbf{R}^{\mathbf{k}}_{\mathbf{i},\mathbf{j}}$, for each pair of states, $(\mathbf{q}_{\mathbf{i}},\mathbf{q}_{\mathbf{j}})$, in some DFA. How is $\mathbf{R}^{\mathbf{k}+1}_{\mathbf{i},\mathbf{j}}$ calculated, where $\mathbf{k}+1$ is no greater than the number of states in the associated DFA?

$$R^{k+1}_{i,j} = R^{k}_{i,j} + R^{k}_{i,k+1} (R^{k}_{k+1,k+1})^{*} R^{k}_{k+1,j}$$

4. Analyze the following language, \mathbf{L} , proving it is **non**-regular by showing that there are an **infinite** number of equivalence classes formed by the relation $\mathbf{R}_{\mathbf{L}}$ defined by:

x
$$\mathbf{R}_{\mathbf{L}}$$
 y if and only if $[\forall z \in \{a,b,c\}^*, xz \in \mathbf{L} \text{ exactly when } yz \in \mathbf{L}].$

where

 $L = \{ \ c^k \ a^n \ b^m \mid n < m, \ k > 0 \ \}.$

You don't have to present all equivalence classes, but you must demonstrate a pattern that gives rise to an infinite number of classes, along with evidence that these classes are distinct from one another.

Consider the set of equivalence classes $[ca^{i}b]$, $i \ge 0$. Clearly $ca^{i}b \bullet b^{i}$ is in L, but $ca^{j}b \bullet b^{i}$ is not in L, when j > i.

Thus, $[ca^{i}b] \neq [ca^{j}b]$ when j > i leading to an infinite number of equivalence classes induced by R_L Consequently L is not Regular.

5. Write a context-free grammar for the language $L = \{ c^k a^n b^m | n < m, k > 0 \}$. Yes, this is the one you just showed is not Regular.

 $G = (\{S,T\}, \{a,b,c\}, R, S\} \text{ where } R \text{ is:}$ $S \rightarrow c S / cT$ $T \rightarrow a T b / T b / b$

6. Which of the following are correct definitions of an ambiguous grammar? Write T(true) or F(false).

There are two distinct derivations of some string \mathbf{w} derived by the grammar \underline{F}

There are two distinct parse trees for some string w derived by the grammar \underline{T}

7. Use the Pumping Lemma for context-free languages to show $\mathbf{L} = \{ \mathbf{a^n b^n}^2 | \mathbf{n} > 0 \}$ is **not** a CFL. *Be complete and remember to differentiate what you get to do and what the PL gets to do.*

P.L: Provide N>0 We: Choose $a^N b^{N^2}$ in L P.L: Tells us $a^N b^{N^2} = uvwxy$, $|vxy| \le N$ and |vx| > 0. We: Choose i=2 and then analyze cases a) Assume vx contains some a's then uv^2wx^2y contains at least N+1 a's and at most N^2+N-1 b's. But $(N+1)^2 = N^2 + 2N + 1$. Thus, the number of b's in uv^2wx^2y is insufficient in comparison to the number of a's and hence uv^2wx^2y is not in L. b) Assume vx contains no a's the uv^2wx^2y contains N a's and at least N^2+1 b's. Thus, the number of b's in uv^2wx^2y is too many in comparison to the number of a's and so uv^2wx^2y is not in L.

This covers all possibilities and hence L is not Context Free

- 8. Consider the CFG G = ({ S, T }, { a, b }, R, S) where R is: S \rightarrow a T T | T S | a
 - $T \rightarrow b S T \mid b$
 - **a.**) Present a pushdown automaton that accepts the language generated by this grammar. You may (and are encouraged) to use a transition diagram where transitions have arcs with labels of form $\mathbf{a}, \alpha \rightarrow \beta$ where $\mathbf{a} \in \Sigma \cup \{\lambda\}, \alpha, \beta \in \Gamma^*$. Note: I am encouraging you to use extended stack operations.

What parsing technique are you using? (Circle one) top-down or bottom-upHow does your PDA accept? (Circle one) final state or empty stack or final state and empty stackWhat is the initial state?QWhat is the initial stack content?\$What are your final states (if any)?None

b.) Now, using the notation of **ID**s (Instantaneous Descriptions, **[q, x, z]**), describe how your PDA accepts strings generated by **G**.

 $[q, w, \$] \Rightarrow * [f, \lambda, \lambda]$ if by final state and empty stack (my solution on (a) Bottom-Up)

 $[q, w, \$] \Rightarrow * [f, \lambda, \$]$ if by final state (I could have done this on (a) Bottom-Up)

 $[q, w, \$] \Rightarrow * [q, \lambda, \lambda]$ if by empty stack (my solution on (a) Top-Down)

COT 4210

- 9. Consider the context-free grammar $G = (\{S, B, E\}, \{0, 1, i, e, s\}, R, S)$, where R is:
 - $S \rightarrow i B S E | s$ $B \rightarrow 0 | 1$ $E \rightarrow \lambda | e S$
- a.) Remove all λ -rules from G, creating an equivalent grammar G'. Show all rules, including copied ones.

 $S \rightarrow iBS / i B S E / s$ $B \rightarrow 0 / 1$ $E \rightarrow e S$

b.) Convert grammar **G'** to its Chomsky Normal Form equivalent, **G''**. Show all rules, including copied ones from part (a).

 $S \rightarrow \langle I B \rangle S / \langle i B \rangle \langle S E \rangle / s$ $B \rightarrow 0 / 1$ $E \rightarrow \langle e \rangle S$ $\langle i B \rangle \rightarrow \langle i \rangle B$ $\langle S E \rangle \rightarrow \langle i \rangle B$ $\langle e \rangle \rightarrow e$ $\langle e \rangle \rightarrow e$ $\langle i \rangle \rightarrow i$

10. Let C be some class of formal languages that is closed under substitution of members of its own class and under intersection with Regular Languages. Prove that C is also closed under RealWrappers, where RealWrappers(L) = { xz | x, z ∈Σ⁺, ∃y∈Σ⁺, w=xyz ∈ L }. You may assume substitution f(a) = {a, a'}, and homomorphisms g(a) = a' and h(a) = a, h(a') = λ. Here a∈Σ and a' is a new character associated with each a∈Σ.

 $RealWrappers(L) = h(f(L) \cap \Sigma^+ g(\Sigma^+) \Sigma^+)$

11. Fill in the following table with **Y** (yes) or **N** (no) in each cell, depending upon whether or not the class of languages is closed under the stated operation.

	Regular Languages	Context Free Languages
Concatenation with Regular	Y	Y
Quotient with Regular	Y	Y
Complementation	Y	N
Superset	N	N

12. Present the CKY recognition matrix for the string $\mathbf{v} + (\mathbf{v} - \mathbf{v})$ assuming the Chomsky Normal Form grammar specified by the grammar

G = ({ E, A, B, T, U, L, R, P, M }, { v, +, -, (,) }, Rules, E), where the Rules set is:

 $E \rightarrow EA | EB | LU | v$ $A \rightarrow PT$ $B \rightarrow MT$ $T \rightarrow LU | v$ $U \rightarrow ER$ $L \rightarrow ($ $R \rightarrow)$ $P \rightarrow +$

 $M \rightarrow -$

	v	+	(v	_	v)
1	E,T	Р	L	E,T	М	E.T	R
2					В	U	
3				E			-
4				U		1	
5			E,T		4		
6		A		<u>u</u>			
7	E		1				

Note: Do not be surprised if the above table is sparsely populated. Hint: Be concerned if it's densely populated.