Sample Assignment # 5.1

- For each of the following, prove it is not regular by using the Pumping Lemma or Myhill-Nerode. You must do one of these using the Pumping Lemma and one using Myhill-Nerode.
- a. { $a^{k!} | k > 0$ } This is set { $a^1, a^2, a^6, a^{24}, a^{120}, \dots$ }
- b. { $a^{i}b^{j}c^{k} | i \ge 0, j \ge 0, k \ge 0, j = i + k$ }

Assignment # 5.1 Answer

- 1a. { a^{k!} | k>0 } using P.L.
- 1. Assume that L is regular
- 2. Let N be the positive integer given by the Pumping Lemma
- 3. Let *s* be a string $s = a^{(N+1)!} \in L$
- 4. Since $s \in L$ and $|s| \ge N$, s is split by PL into xyz, where $|xy| \le N$ and |y| > 0 and for all $i \ge 0$, $xy^i z \in L$
- 5. We choose i = 2; by PL: $xy^2z = xyyz \in L$
- Thus, a^{(N+1)!+|y|} would be ∈ L. This means that there is a factorial between (N+1)! and (N+1)!+N, but the smallest factorial after (N+1)! Is (N+2)! = (N+2) (N+1)! = N(N+1)! + 2(N+1)! > (N+1)! + 2N > (N+1)!+N
- 7. This is a contradiction, therefore L is not regular
- 8. Note: Using N is dangerous because N could be 1 and 2! Is within N (1) of 1!

1b. { $a^{i}b^{j}c^{k}$ | i≥0, j≥0, k≥0, j = i + k } using P.L.

- 1. Assume that L is regular
- 2. Let N be the positive integer given by the Pumping Lemma
- 3. Let *s* be the string $s = a^N b^N \in L$
- 4. Since $s \in L$ and $|s| \ge N$, s is split by PL into xyz, where $|xy| \le N$ and |y| > 0 and for all $i \ge 0$, $xy^iz \in L$
- 5. We choose i = 0; by PL: $xz = xz \in L$
- 6. Thus, $a^{N-|y|}b^N$ would be $\in L$, but it's not since N-|y| + 0 < N. Note: The 0 is because there are 0 c's
- 7. This is a contradiction, therefore L is not regular

Assignment # 5.1 Answer

1a. { $a^{k!}$ | k>0 } using M.N.

We consider the collection of right invariant equivalence classes $[a^{j!-j}]$, $j \ge 0$.

It's clear that $a^{j!-j}a^j$ is in the language, but $a^{k!-k}a^j$ is not when j < k

This shows that there is a separate equivalence class $[a^{j!-j}]$ induced by R_L , for each $j \ge 0$.

Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular.

1b. { $a^{i}b^{j}c^{k}$ | $i \ge 0$, $j \ge 0$, $k \ge 0$, j = i + k } using M.N.

We consider the collection of right invariant equivalence classes $[a^j]$, $j \ge 0$.

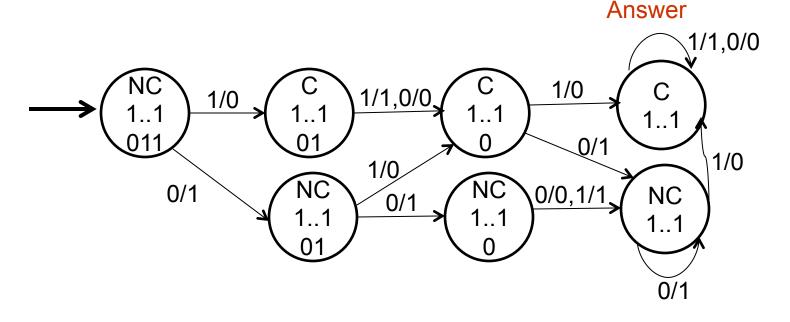
It's clear that $a^{j}b^{j}$ is in the language, but $a^{k}b^{j}$ is not when $j \neq k$

This shows that there is a separate equivalence class $[a^j]$ induced by R_L , for each $j \ge 0$.

Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular. ■

Assignment # 5.2

Write a Mealy finite state machine that produces the 2's complement result of subtracting 101 from a binary input stream (assuming at least 3 bits of input)



Assignment # 5.3

```
Write a regular (right linear) grammar that generates the set of strings
denoted by the regular expression (0+11)^* (101 (00 + 1)^*)^*
G = (\{<0+11>,<1\ 1>,<1\ 01>,<10\ 1>,<00+11>,<0\ 0>\}, \{0,1\}, R, <0+11>)
<0+11> \rightarrow 0<0+11> | 1<1 | 1<1 | 01> | \lambda
<1 1> → 1<0+11>
<1 01> → 0<10 1>
<10 1> → 1<00+1>
<00+1> \rightarrow 0<0 \ 0> | 1<00+1> | \lambda | 1<1_01>
<0 0> → 0<00+1>
Or
G = ({S,T,U,V,W,X}, {0,1}, R, S)
S \rightarrow 0S | 1T | 1U | \lambda
T \rightarrow 1S
U \rightarrow 0V
V \rightarrow 1W
W \rightarrow 0X \mid 1W \mid \lambda \mid 1U
X \rightarrow 0W
```