Sample Assignment # 3.1

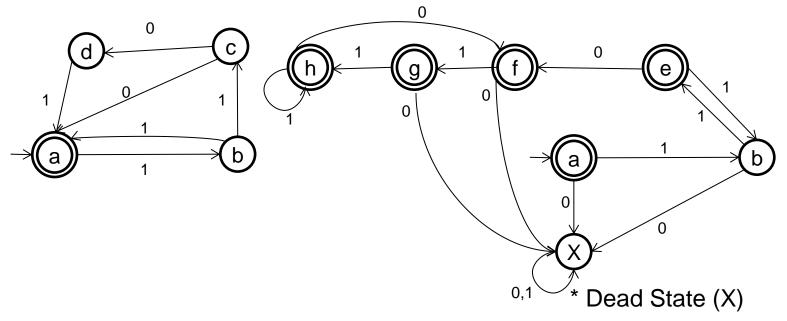
Present a transition diagram for a DFA that recognizes the set of binary strings that starts with a 1 and, when interpreted as entering the DFA most to least significant digit, each represents a binary number that is divisible by seven. Thus, 111, 1110 and 10101 are in the language, but 110, 1001 and 11000 are not.

Construction:

I can do on board, but this is a simple variant of one I already did. It must have an extra start state to guarantee a 1 is leftmost symbol. There are then seven more states, labeled M_0 to M_6 for the value mod 7. M_0 is final, M_i goes to $M_{2i \mod 7}$ on a 0 and to $M_{2i+1 \mod 7}$ on a 1. The start state goes to M_1 .

Sample Assignment # 3.2

- a.) Present a transition diagram for an NFA for the language associated with the regular expression (1101 + 110 + 11)*. Your NFA must have no more than four states.



Sample Assignment # 3.3

Using DFA's (not any equivalent notation) show that the Regular Languages are closed under Max, where $Max(L) = \{ w \mid w \in L, \text{ and } w \text{ is not the proper prefix of any other string in L}.$

This means that $w \in Max(L)$ iff $w \in L$ and for no $x \neq \lambda$ is wx in L. Said a third way, no extension of w is also in L.

```
Let A = (Q, \Sigma, \delta, q_0, F) be a DFA such that L = L(A).
Define A_{MAX} = (Q, \Sigma, \delta, q_0, F'), where F' = \{ f \mid f \in F \text{ and no member of } F, \text{ including } f, \text{ is in Reachable+(f) } \}, and Reachable+(q) = \{ s \mid \delta^*(q, x) = s, \text{ for some } x, \text{ where } |x| > 0 \}
```

```
L(A_{MAX}) = \{ w \mid \delta^*(q_0, w) \in F \text{ but for no } x, |x| > 0, \text{ does } \delta^*(q_0, wx) \in F \}
```

This is just the definition of MAX(L) recast in terms of the behavior of its accepting DFA and so our construction works as desired.