Sample Assignment # 2.2 (I have no sample for 2.1)

Present a language L over $\Sigma = \{a\}$ where $L^3 = L^4$ but $L \neq L^2$ and $L^2 \neq L^3$ Note: $L^k = \{x_1x_2...x_k \mid x_1, x_2, ..., x_k \in L\}$

Proof:

Consider $L = \{a\}^* - \{aa, aaa\}$

 $L^2 = \{a\}^* - \{aaa\}$ since the presence of the empty string in $\{a\}^*$ means all strings in L are in L². Additionally, $aa = a^\circ$ a and so aa is in L² but aaa is not since it cannot be formed from any pair of members in L

 $L^3 = \{a\}^*$ since the presence of the empty string in $\{a\}^*$ means all strings in L^2 are in L^3 Additionally, aaa = aa ° a and so aaa is in L^3

 $L^3 = L^4$ since L^3 is already {a}* and so nothing new can be created and the presence of the empty string in {a}* means all in L^3 are in L^4