Sample Assignment \# 2.2 (I have no sample for 2.1)

Present a language L over $\Sigma=\{a\}$ where $L^{3}=L^{4}$ but $L \neq L^{2}$ and $L^{2} \neq L^{3}$
Note: $\mathrm{L}^{\mathrm{k}}=\left\{\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{k}} \mid \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}} \in \mathrm{L}\right\}$
Proof:
Consider $\mathrm{L}=\{\mathrm{a}\}^{*}-\{\mathrm{aa}, \mathrm{aaa}\}$
$L^{2}=\{a\}^{*}-\{a a a\}$ since the presence of the empty string in $\{a\}^{*}$ means all strings in L are in L^{2}. Additionally, $a a=a^{\circ}$ a and so aa is in L^{2} but aaa is not since it cannot be formed from any pair of members in L
$L^{3}=\{a\}^{*}$ since the presence of the empty string in $\{a\}^{*}$ means all strings in L^{2} are in L ${ }^{3}$
Additionally, $\mathrm{aaa}=\mathrm{aa}{ }^{\circ} \quad \mathrm{a}$ and so aaa is in L^{3}
$L^{3}=L^{4}$ since L^{3} is already $\{a\}^{*}$ and so nothing new can be created and the presence of the empty string in $\{a\}^{*}$ means all in L^{3} are in L^{4}

