Sample Assignment \# 1.1

1. Prove that, for sets A and B,
$A=B$ if and only if $(A \cap \sim B) \cup(\sim A \cap B)=\varnothing$,
where $\sim S$ is the complement of S
Part 1) Prove if $A=B$, then $(A \cap B) \cup(\sim A \cap B)=\varnothing$
Assume $A=B$ then $(A \cap \sim B) \cup(\sim A \cap B)=(A \cap \sim A) \cup(\sim A \cap A)$
Now, any set intersected with its complement must be empty by the definition of complement, so $(A \cap \sim A)=\varnothing$ and $(\sim A \cap A)=\varnothing$ and thus their union is also empty, proving that $A=B$ implies $(A \cap B) \cup(\sim A \cap B)=\varnothing$.

Part 2) Prove if $(A \cap \sim) \cup(\sim A \cap B)=\varnothing$, then $A=B$
Assume $(A \cap B) \cup(\sim A \cap B)=\varnothing$ then, by definition of union, $(A \cap \sim B)=\varnothing$ and $(\sim A \cap B)=\varnothing$ else the union would have at least one element in it. This in turn implies that no element of A is in the complement of B and no element of B is in the complement of A. Thus, all elements of A are in B and all elements of N are in A. Stated more formally, $A \subseteq B$ and $B \subseteq A$. But, mutual containment is the definition of set equality and so $A=B$. proving that $(A \cap B) \cup(\sim A \cap B)=\varnothing$ implies $A=B$.

Sample Assignment \# 1.2

2. Prove, If S is any finite set with $|\mathrm{S}|=\mathrm{n}$, then $|\mathrm{S} \times \mathrm{S} \times \mathrm{S} \times \mathrm{S}| \leq|P(\mathrm{~S})|$, for all $\mathrm{n} \geq \mathrm{N}$, where N is some constant, the minimum value of which you must discover and use as the basis for your proof.
Proof:
(This is the same as showing $n^{4} \leq 2^{n}$, for all $n \geq N$. We shall show this is true when
$\mathrm{N}=16$.)
Basis: $16^{4}=\left(2^{4}\right)^{4}=2^{16} \leq 2^{16}$. This proves the base case. Note: that $15^{4}=50625$ and $2^{15}=32768$ and so $N=15$ fails.
I.H. Assume for some $K, K \geq 16, K^{4} \leq 2^{K}$.
I.S. $(K+1):(K+1)^{4}=K^{4}+4 K^{3}+6 K^{2}+4 K+1$
$\leq K^{4}+4 K^{3}+6 K^{3}+4 K^{3}+K^{3}$ since $K \geq 1$
$=K^{4}+15 K^{3} \leq K^{4}+K^{4}$ since $K \geq 16$
$\leq 2^{\mathrm{K}}+2^{\mathrm{K}}$ by IH
$=2^{\mathrm{K}+1}$
Thus, $(K+1)^{4} \leq 2^{K+1}$ and the I.S. is proven.

Sample Assignment \# 1.3

3. Consider the function pair. $\boldsymbol{N} \times \boldsymbol{N} \rightarrow \boldsymbol{N}$ defined by $\operatorname{pair}(\mathrm{x}, \mathrm{y})=2^{\mathrm{x}}(2 \mathrm{y}+1)-1$ Show that pair is a surjection (onto \boldsymbol{M}. Note: It's actually a bijection (1-1 onto \boldsymbol{N}), but I am not asking you to show that.
Proof:
Case 1: All even numbers are in range.
Let $\mathrm{x}=0$. Then $2^{\mathrm{x}}(2 \mathrm{y}+1)-1=2 \mathrm{y}+1-1=2 \mathrm{y}$ where $\mathrm{y} \geq 0$
Since y ranges over the natural numbers, $2 y$ ranges over all even numbers and case 1 is shown.
Case 2: All odd numbers are in range.
Let $x>0$. Odd numbers are all those of the form $2 z-1, z>0$. That is, they have a non-trivial even factor and an odd factor that could be just 1 .
Essentially, then, every odd number is 1 less than some non-zero even number. But, every non-zero even number has a factorization that is of the form $2^{x}(2 y+1)$, where $x>0$ and $y \geq 0$. This shows that $2^{x}(2 y+1)-1$ ranges over all odd numbers, when $x>0$ and case 2 is shown.

Sample Assignment \# 1.3

3. Consider the function pair. $\boldsymbol{N} \times \boldsymbol{N} \rightarrow \boldsymbol{N}$ defined by $\operatorname{pair}(\mathrm{x}, \mathrm{y})=2^{\mathrm{x}}(2 \mathrm{y}+1)-1$ Show that pair is a surjection (onto \boldsymbol{M}). Note: It's actually a bijection ($1-1$ onto \boldsymbol{N}), but I am not asking you to show that.
Simpler Proof Informed by case 2 on previous page:
All natural numbers are in range of $2^{x}(2 y+1)-1$.
We show this by proving that all positive natural numbers are in the range of $2^{x}(2 y+1)$. We note that every non-zero natural number has a unique factorization that is of the form $2^{x}(2 y+1)$, where the first term captures the number's even part (or $\mathrm{x}=0$ if not even) and the second part captures its odd part. This shows that $2^{x}(2 y+1)-1$ ranges over all natural numbers and so the range of pair is the set of all natural numbers. Note, we actually show uniqueness here based on the unique prime factorization theorem and so pair is not just a surjection; it is a bijection.
