Practice Assignment \# 8

1. Use Rice' s Theorem to show that $\{f \mid \exists \mathrm{ff}(\mathrm{x})=0\}$ is undecidable
2. Use Rice' s Theorem to show that $\{f \mid \forall x f(x+1)=f(x)+1\}$ is undecidable
3. Use quantification of an algorithmic predicate to estimate the complexity (decidable, re, co-re, non-re) of each of the following, (a)-(d):
a) $\quad\{\mathrm{f} \mid$ for all input $\mathrm{x}, \mathrm{f}(\mathrm{x})=\mathrm{f}(0)$, that is f is a constant function \}
b) $\{f \mid$ for two unique input values, $x, y, f(x)=f(y)\}$
c) $\{\langle f, x>| f(x)$ takes at least 10 time steps before converging \}
d) $\{<\mathrm{f}, \mathrm{x}>\mid \mathrm{f}(\mathrm{x}) \uparrow\}$
4. Let sets A and B each be re non-recursive (undecidable). Consider $C=A \cap B$. For (a)-(c), either show sets A and B with the specified property or demonstrate that this property cannot hold.
a) Can C be recursive?
b) Can C be re non-recursive (undecidable)?
c) Can C be non-re?

Assignment \# 8.1

1. Use Rice' s Theorem to show that $\left\{f \mid \exists x\left[\varphi_{f}(x)=0\right]\right\}$ is undecidable

Call this set $\mathrm{SI}=\left\{\mathrm{f} \mid \exists \mathrm{x}\left[\mathrm{P}_{\mathrm{f}}(\mathrm{x})=0\right]\right\}$.
Let f be an arbitrary index (natural number). f is in $S I$ iff $\exists x\left[\varphi_{f}(x)=0\right.$]
First, SI is non-trivial as
$\mathrm{Z}(\mathrm{x})=0$ is in SI and $\mathrm{I}(\mathrm{x})=\mathrm{x}$ is not in SI
Second, SI is an I/O property as
Let f, g be arbitrary indices (natural numbers) such that $\forall x \varphi_{f}(x)=\varphi_{g}(x)$. φ_{f} is in SI iff $\exists x \varphi_{f}(x)=0$. Let one of the x 's with this property be x_{0}.
That is, $\varphi_{f}\left(x_{0}\right)=0$.
Since $\forall x \varphi_{f}(x)=\varphi_{g}(x), \varphi_{g}\left(x_{0}\right)=0$.
But then, φ_{f} is in SI implies φ_{g} is in SI.
If, on the other hand, $\sim \exists x \varphi_{f}(x)=0$, then $\sim \exists x \varphi_{g}(x)=0$,
and so if $f \notin$ SI then $g \notin S I$.
Combining these $f \in S I$ iff $g \in S I$
The above shows that SI satisfies both conditions for Rice's Theorem, and hence SI is undecidable.

Assignment \# 8.2

2. Use Rice' s Theorem to show that $\left\{\mathrm{f} \mid \forall \mathrm{x}\left[\varphi_{f}(\mathrm{x}+1)=\varphi_{\mathrm{f}}(\mathrm{x})+1\right]\right\}$ is undecidable

Call this set $\mathrm{MI}=\left\{\mathrm{f} \mid \forall \mathrm{x}\left[\varphi_{\mathrm{f}}(\mathrm{x}+1)=\varphi_{\mathrm{f}}(\mathrm{x})+1\right]\right\}$.
Let f be an arbitrary index (natural number). f is in $M I$ iff $\forall x \varphi_{f}(x+1)=\varphi_{f}(x)+1$ First, MI is non-trivial as
$\mathrm{I}(\mathrm{x})=\mathrm{x}$ is in MI and $\mathrm{Z}(\mathrm{x})=0$ is not in MI
Second, MI is an I/O property as
Let f, g be arbitrary indices (natural numbers) such that $\forall x \varphi_{f}(x)=\varphi_{g}(x)$. φ_{f} is in M Iff $\forall x \varphi_{f}(x+1)=\varphi_{f}(x)+1$ iff $\forall x \varphi_{g}(x+1)=\varphi_{g}(x)+1$, since $\forall x \varphi_{f}(x)=\varphi_{g}(x)$
But then, φ_{f} is in MI iff φ_{g} is in MI.
The above shows that MI satisfies both conditions for Rice's Theorem, and hence MI is undecidable.

Assignment \# 8.3

3. Use quantification of a algorithmic predicate to estimate the complexity (decidable, re, co-re, non-re) of each of the following, (a)-(d):
a) $\quad\{f \mid$ for all input $x, f(x)=f(0)$, that is f is a constant function \}
$\{\mathbf{f} \mid \forall \mathrm{x} \exists \mathrm{t}[\operatorname{STP}(\mathbf{f}, \mathrm{x}, \mathrm{t}) \& \& \operatorname{STP}(\mathrm{f}, \mathbf{0}, \mathrm{t}) \& \&(\operatorname{VALUE}(\mathrm{f}, \mathrm{x}, \mathrm{t})==\operatorname{VALUE}(\mathrm{f}, \mathbf{0}, \mathrm{t}))]\}$
Hence non-re
b) $\quad\{\mathrm{f} \mid$ for two unique input values, $\mathrm{x}, \mathrm{y}, \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})\}$
$\{\mathrm{f} \mid \exists<\mathrm{x}, \mathrm{y}, \mathrm{t}>[\operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t}) \& \& \operatorname{STP}(\mathrm{f}, \mathrm{y}, \mathrm{t}) \& \&(\operatorname{VALUE}(\mathrm{f}, \mathrm{x}, \mathrm{t})==\operatorname{VALUE}(\mathrm{f}, \mathrm{y}, \mathrm{t}))]\}$
re
c) $\{<\mathbf{f}, \mathrm{x}>\mid \mathrm{f}(\mathrm{x})$ takes at least $\mathbf{1 0}$ time steps before converging \}
$\{<\mathrm{f}, \mathrm{x}>\mid \sim \operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{g})$ \}
decidable
d) $\{\langle\boldsymbol{f}, \mathrm{x}>| \mathrm{f}(\mathrm{x}) \uparrow\}$
$\{\langle\mathrm{f}, \mathrm{x}>| \forall \mathrm{t}[\sim \operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t})]\}$
co-re

Assignment \# 8.4

4. Let sets A and B each be re non-recursive (undecidable).

Consider $C=A \cap B$. For (a)-(c), either show sets A and B with the specified property or demonstrate that this property cannot hold.
a) Can C be recursive?

Yes. Let $A=\{2 x \mid x \in$ HALT $\} ; B=\{2 x+1 \mid x \in$ HALT $\}$. Both A and B are many-one equivalent to Halt and so both are re non-recursive, but $A \cap B=\varnothing$, which is recursive (decidable).
b) Can C be re non-recursive (undecidable)?

Yes. Let $A=B=$ HALT. Both A and B are re non-recursive, and $A \cap B=$ HALT, which is re non- recursive (undecidable).
c) Can C be non-re?

No. The re sets are closed under intersection by the following argument. Let A and B be arb. Re sets, Let these be the domains of two procedures g_{A} and g_{B}, respectively. Define $g_{A \cap B}(x)=g_{A}(x){ }^{*} g_{A}(x)$. Clearly the domain of $g_{A \cap B}$ is the intersection of the domains of g_{A} and g_{B} and so is $A \cap B$, showing this set is re.

