Practice Assignment # 8

- 1. Use Rice's Theorem to show that $\{f \mid \exists x f(x) = 0\}$ is undecidable
- 2. Use Rice's Theorem to show that $\{f \mid \forall x f(x+1)=f(x)+1\}$ is undecidable
- 3. Use quantification of an algorithmic predicate to estimate the complexity (decidable, re, co-re, non-re) of each of the following, (a)-(d):
 - a) { f | for all input x, f(x) = f(0), that is f is a constant function }
 - b) { f | for two unique input values, x,y, f(x) = f(y) }
 - c) { <f,x> | f(x) takes at least 10 time steps before converging }
 - d) { <f,x> | $f(x)^{\uparrow}$ }
- Let sets A and B each be re non-recursive (undecidable).
 Consider C = A ∩ B. For (a)-(c), either show sets A and B with the specified property or demonstrate that this property cannot hold.
 - a) Can C be recursive?
 - b) Can C be re non-recursive (undecidable)?
 - c) Can C be non-re?

1. Use Rice's Theorem to show that { f | $\exists x [\phi_f(x) = 0]$ } is undecidable

Call this set SI = { f | $\exists x [\phi_f(x) = 0]$ }. Let f be an arbitrary index (natural number). f is in SI iff $\exists x [\phi_f(x) = 0]$ First, SI is non-trivial as Z(x) = 0 is in SI and I(x) = x is not in SI Second, SI is an I/O property as Let f,g be arbitrary indices (natural numbers) such that $\forall x \phi_f(x) = \phi_g(x)$. ϕ_f is in SI iff $\exists x \phi_f(x)=0$. Let one of the x's with this property be x_0 . That is, $\phi_f(x_0) = 0$. Since $\forall x \phi_f(x) = \phi_g(x)$, $\phi_g(x_0) = 0$. But then, ϕ_f is in SI implies ϕ_g is in SI. If, on the other hand, $\sim \exists x \phi_f(x) = 0$, then $\sim \exists x \phi_g(x) = 0$, and so if $f \notin$ SI then $g \notin$ SI. Combining these $f \in$ SI iff $g \in$ SI

The above shows that SI satisfies both conditions for Rice's Theorem, and hence SI is undecidable.

2. Use Rice's Theorem to show that { f | $\forall x [\phi_f(x+1) = \phi_f(x) + 1]$ } is undecidable

Call this set MI = { f | $\forall x [\phi_f(x+1) = \phi_f(x) + 1] }.$

Let f be an arbitrary index (natural number). f is in MI iff $\forall x \phi_f(x+1) = \phi_f(x) + 1$ First, MI is non-trivial as

I(x) = x is in MI and Z(x) = 0 is not in MI

Second, MI is an I/O property as

Let f,g be arbitrary indices (natural numbers) such that $\forall x \phi_f(x) = \phi_g(x)$.

 ϕ_f is in MI iff $\forall x \phi_f(x+1) = \phi_f(x) + 1$ iff $\forall x \phi_g(x+1) = \phi_g(x) + 1$, since $\forall x \phi_f(x) = \phi_g(x)$ But then, ϕ_f is in MI iff ϕ_g is in MI.

The above shows that MI satisfies both conditions for Rice's Theorem, and hence MI is undecidable.

- 3. Use quantification of a algorithmic predicate to estimate the complexity (decidable, re, co-re, non-re) of each of the following, (a)-(d):
 - a) { f | for all input x, f(x) = f(0), that is f is a constant function } { f | ∀x∃t [STP(f,x,t) && STP(f,0,t) && (VALUE(f,x,t) == VALUE(f,0,t))] } Hence non-re
 - b) { f | for two unique input values, x,y, f(x) = f(y) } { f | ∃<x,y,t> [STP(f,x,t) && STP(f,y,t) && (VALUE(f,x,t) == VALUE(f,y,t))] } re
 - c) { <f,x> | f(x) takes at least 10 time steps before converging } { <f,x> | ~STP(f,x,9) } decidable
 - d) { <f,x> | f(x)↑ } { <f,x> | ∀t [~STP(f,x,t)] } co-re

- Let sets A and B each be re non-recursive (undecidable).
 Consider C = A ∩ B. For (a)-(c), either show sets A and B with the specified property or demonstrate that this property cannot hold.
 - a) Can C be recursive?

Yes. Let A = { $2x | x \in HALT$ }; B = { $2x+1 | x \in HALT$ }. Both A and B are many-one equivalent to Halt and so both are re non-recursive, but A \cap B = \emptyset , which is recursive (decidable).

- b) Can C be re non-recursive (undecidable)? Yes. Let A = B = HALT. Both A and B are re non-recursive, and $A \cap B =$ HALT, which is re non-recursive (undecidable).
- c) Can C be non-re?

No. The re sets are closed under intersection by the following argument. Let A and B be arb. Re sets, Let these be the domains of two procedures g_A and g_B , respectively. Define $g_{A \cap B}(x) = g_A(x) * g_A(x)$. Clearly the domain of $g_{A \cap B}$ is the intersection of the domains of g_A and g_B and so is $A \cap B$, showing this set is re.