Assignment \# 5.1

For each of the following, either show it is regular by producing a regular grammar that generates the language or prove it is not regular by using the Pumping Lemma or Myhill-Nerode. You must do at least two of these using the Pumping Lemma and at least two using Myhill-Nerode.
a. $\left\{a^{\text {Fib }(k)} \mid k>0\right\}$ This is $\left\{a^{1}, a^{1}, a^{2}, a^{3}, a^{5}, a^{8}, a^{13}, a^{21}, \ldots\right\}$
b. $\left\{\right.$ a $\left.^{i b i c}{ }^{k} \mid i \geq 0, j \geq 0, k \geq 0, k=\min (i, j)\right\}$
c. $\left\{a^{i} b^{i} c^{k} \mid i \geq 0, j \geq 0, k \geq 0, j=i^{*} k\right\}$
d. $\left\{a^{i b j} c^{k} \mid i \geq 0, j \geq 0, k \geq 0\right.$, if $i=1$ then $j>k$ \}
e. $\left\{w \mid w \in\{a, b\}^{*}\right.$ and $\left.w=w^{R}\right\}$ this is the set of palindromes. It contains strings like aa, abba, abaaba

Assignment \# 5.1 Answer

1a, $\left\{a^{\text {Fib(k) }} \mid k>0\right\}$ using P.L.

1. Assume that L is regular
2. Let N be the positive integer given by the Pumping Lemma
3. Let s be a string $s=a^{\mathrm{Fib}(\mathrm{N}+3)} \in \mathrm{L}$
4. Since $s \in L$ and $|s| \geq N(F i b(N+3)>N$ in all cases; actually Fib($\mathrm{N}+2$) $>\mathrm{N}$ as well), s is split by PL into $x y z$, where $|x y| \leq N$ and $|y|>0$ and for all $i \geq 0, x y^{i z} \in L$
5. We choose $\mathrm{i}=2$; by PL: $x y^{2} z=x y y z \in \mathrm{~L}$
6. Thus, $\mathrm{a}^{\mathrm{Fib}(\mathrm{N}+3)+|\mathrm{y}|}$ would be $\in \mathrm{L}$. This means that there is Fibonacci number between Fib(N+3) and $\mathrm{Fib}(\mathrm{N}+3)+\mathrm{N}$, but the smallest Fibonacci greater than $\mathrm{Fib}(\mathrm{N}+3)$ is $\mathrm{Fib}(\mathrm{N}+3)+\mathrm{Fib}(\mathrm{N}+2)$ and $\mathrm{Fib}(\mathrm{N}+2)>\mathrm{N}$ This is a contradiction, therefore L is not regular
7. Note: Using values less than $\mathrm{N}+3$ could be dangerous because N could be 1 and both Fib(2) and $\mathrm{Fib}(3)$ are within N (1) of $\mathrm{Fib}(1)$.
$1 b,\left\{a^{i} b^{j} c^{k} \mid i \geq 0, j \geq 0, k \geq 0, k=\min (i, j)\right\}$ using P.L.
8. Assume that L is regular
9. Let N be the positive integer given by the Pumping Lemma
10. Let s be the string $s=a^{N} b^{N+1} c^{N} \in L$
11. Since $s \in L$ and $|s| \geq N$, s is split by PL into $x y z$, where $|x y| \leq N$ and $|y|>0$ and for all $i \geq 0$, $x y^{i z} \in L$
12. We choose $\mathrm{i}=0$; by PL: $\mathrm{xz}=\mathrm{xz} \in \mathrm{L}$
13. Thus, $a^{N-|y| b} b^{N+1} c^{N}$ would be $\in L$, but it's not since $N-|y|<N<N+1$
14. This is a contradiction, therefore L is not regular

Assignment \# 5.1 Answer

1c, $\left\{\right.$ a $\left.^{i b i c} c^{k} \mid i \geq 0, j \geq 0, k \geq 0, j=i * k\right\}$ using P.L.

1. Assume that L is regular
2. Let N be the positive integer given by the Pumping Lemma
3. Let s be the string $s=a^{N} b^{N} c \in L$
4. Since $s \in L$ and $|s| \geq N$, s is split by $P L$ into $x y z$, where $|x y| \leq N$ and $|y|>0$ and for all $i \geq 0, x y^{i z} \in L$
5. We choose $\mathrm{i}=0$; by PL: $\mathrm{xz}=\mathrm{xz} \in \mathrm{L}$
6. Thus, $a^{N-|y| b N}{ }^{N}$ would be $\in L$, but it's not since $(N-|y|){ }^{*} 1=N-|y|<N$.
7. This is a contradiction, therefore L is not regular

1d, $\left\{a^{i} b^{j} c^{k} \mid i \geq 0, j \geq 0, k \geq 0\right.$, if $i=1$ then $\left.j>k\right\}$ using P.L.

1. This is one I would personally never choose to solve using the Pumping Lemma. Assume that L is regular. The problem is that, if I start with a single a, the PL might break my string up so $\mathrm{y}=\mathbf{a}$ and now erasing it or increasing the number of a's is meaningless because there is no constraint on b's and c's when there is no a or many a's. Alternately, if I start with lots of a's, I have to guarantee I can reduce these to precisely one a. So what's a person to do, other than apply Myhill-Nerode? Well, there is a way because L is regular iff L^{R} is regular, so we can prove L^{R} is non-regular.
2. Let N be the positive integer given by the Pumping Lemma as regards L^{R}
3. Let s be the string $s=c^{N} b^{N+1} a \in L$
4. Since $s \in L$ and $|s| \geq N$, s is split by PL into $x y z$, where $|x y| \leq N$ and $|y|>0$ and for all $i \geq 0, x y^{i} z \in L$
5. We choose $\mathrm{i}=2$; by PL: $\mathrm{xz}=\mathrm{xz} \in \mathrm{L}$

6. This is a contradiction, therefore L is not regular ■

Assignment \# 5.1 Answer

$1 e,\left\{w \mid w \in\{a, b\}^{*}\right.$ and $\left.w=w^{R}\right\}$ using P.L.

1. Assume that L is regular
2. Let N be the positive integer given by the Pumping Lemma
3. Let s be the string $s=a^{N} b a^{N} \in L$
4. Since $s \in L$ and $|s| \geq N$, s is split by PL into $x y z$, where $|x y| \leq N$ and $|y|>0$ and for all $i \geq 0, x y^{i} z \in L$
5. We choose $i=0$; by PL: $x z=x z \in L$
6. Thus, $a^{N-|y| b a}{ }^{N}$ would be $\in L$, but it's not since $N-|y| \neq N$.
7. This is a contradiction, therefore L is not regular

Assignment \# 5.1 Answer

1a, $\left\{a^{\text {Fib }(k)} \mid k>0\right\}$ using M.N.
We consider the collection of right invariant equivalence classes [afib(i)], $\gg 2$.
It's clear that $\mathrm{a}^{\text {Fib(}}$ ($\mathrm{a}^{\mathrm{Fib}(j+1)}$ is in the language, but $\mathrm{a}^{\text {Fib }(k)} \mathrm{a}^{\mathrm{Fib}(j+1)}$ is not when $\mathrm{k}>2$ and $\mathrm{k} \neq \mathrm{j}$ and $\mathrm{k} \neq \mathrm{j}+2$
This shows that there is a separate equivalence class [${ }^{\text {Fibl }}(\mathrm{j})$ induced by R_{L}, for each $\mathrm{j}>2$.
Thus, the index of R_{L} is infinite and Myhill-Nerode states that L cannot be Regular.
1b, $\left\{a^{i} b^{j} c^{k} \mid i \geq 0, j \geq 0, k \geq 0, k=\min (i, j)\right\}$ using M.N.
We consider the collection of right invariant equivalence classes [aj], $\mathrm{j} \geq 0$.
It's clear that ajci is in the language, but $a^{k} c^{j}$ is not when $j \neq k$
This shows that there is a separate equivalence class [aj] induced by R_{L}, for each $j \geq 0$.
Thus, the index of R_{L} is infinite and Myhill-Nerode states that L cannot be Regular.
1c, $\left\{a^{i b j} c^{k} \mid i \geq 0, j \geq 0, k \geq 0, j=i^{*} k\right\}$ using M.N.
We consider the collection of right invariant equivalence classes [aj], $\mathrm{j} \geq 0$.
It's clear that aibic is in the language, but akbic is not when $\mathrm{j} \neq \mathrm{k}$
This shows that there is a separate equivalence class [aj] induced by R_{L}, for each $j \geq 0$. Thus, the index of R_{L} is infinite and Myhill-Nerode states that L cannot be Regular.

Assignment \# 5.1 Answer

1d, $\left\{a^{i} b^{i} c^{k} \mid i \geq 0, j \geq 0, k \geq 0\right.$, if $i=1$ then $\left.j>k\right\}$ using M.N.
We consider the collection of right invariant equivalence classes [abi], $\mathrm{j} \geq 1$.
It's clear that abicij${ }^{j-1}$ is in the language, but $\mathrm{ab}^{\mathrm{m}} \mathrm{c}^{\mathrm{j}-1}$ is not when $\mathrm{m}<\mathrm{j}$
This shows that there is a separate equivalence class [aj] induced by R_{L}, for each $j \geq 1$.
Thus, the index of R_{L} is infinite and Myhill-Nerode states that L cannot be Regular.
1e, $\left\{w \mid w \in\{a, b\}^{*}\right.$ and $\left.w=w^{R}\right\}$ using M.N.
We consider the collection of right invariant equivalence classes [aib], $\mathrm{j} \geq 0$.
It's clear that aibaj is in the language, but akbaj is not when $\mathrm{j} \neq \mathrm{k}$
This shows that there is a separate equivalence class [aj] induced by R_{L}, for each $j \geq 0$. Thus, the index of R_{L} is infinite and Myhill-Nerode states that L cannot be Regular.

Assignment \# 5.2

Write a Mealy finite state machine that produces the 2's complement result of subtracting 1101 from a binary input stream (assuming at least 3 bits of input)

Assignment \# 5.3

Write a regular (right linear) grammar that generates the set of strings denoted by the regular expression $\left((10)^{+}(011+1)^{+}\right)^{*}(0+101)^{*}$

$$
\begin{aligned}
\mathrm{G}= & (\{\mathrm{S}, \mathrm{~T}, \mathrm{U}\},\{0,1\}, \mathrm{R}, \mathrm{~S}) \\
\mathrm{R}: & \\
\mathrm{S} & \rightarrow 10 \mathrm{~S}|10 \mathrm{~T}| 0 \mathrm{U}|101 \mathrm{U}| \lambda \\
\mathrm{T} & \rightarrow 011 \mathrm{~T}|1 \mathrm{~T}| 011 \mathrm{~S} \mid 1 \mathrm{~S} \\
\mathrm{U} & \rightarrow 0 \mathrm{U}|101 \mathrm{U}| \lambda
\end{aligned}
$$

