Assignment # 5.1

- For each of the following, either show it is regular by producing a regular grammar that generates the language or prove it is not regular by using the Pumping Lemma or Myhill-Nerode. You must do at least two of these using the Pumping Lemma and at least two using Myhill-Nerode.
- a. { $a^{Fib(k)} | k>0$ } This is { a^1 , a^1 , a^2 , a^3 , a^5 , a^8 , a^{13} , a^{21} , ... }
- b. { $a^{i}b^{j}c^{k} | i \ge 0, j \ge 0, k \ge 0, k = min(i,j)$ }
- c. { aⁱb^jc^k | i≥0, j≥0, k≥0, j = i * k }
- d. { $a^{i}b^{j}c^{k}$ | $i \ge 0$, $j \ge 0$, $k \ge 0$, if i=1 then j > k }
- e. { w | w \in {a, b}* and w = w^R } this is the set of palindromes. It contains strings like aa, abba, abaaba

- 1a, { a^{Fib(k)} | k>0 } using P.L.
- 1. Assume that L is regular
- 2. Let N be the positive integer given by the Pumping Lemma
- 3. Let s be a string $s = a^{Fib(N+3)} \in L$
- Since s ∈ L and |s| ≥ N (Fib(N+3)>N in all cases; actually Fib(N+2)>N as well), s is split by PL into xyz, where |xy| ≤ N and |y| > 0 and for all i ≥ 0, xyⁱz ∈ L
- 5. We choose i = 2; by PL: $xy^2z = xyyz \in L$
- 6. Thus, a^{Fib(N+3)+|y|} would be ∈ L. This means that there is Fibonacci number between Fib(N+3) and Fib(N+3)+N, but the smallest Fibonacci greater than Fib(N+3) is Fib(N+3)+Fib(N+2) and Fib(N+2)>N This is a contradiction, therefore L is not regular ■
- Note: Using values less than N+3 could be dangerous because N could be 1 and both Fib(2) and Fib(3) are within N (1) of Fib(1).
- 1b, { $a^{i}b^{j}c^{k} | i \ge 0, j \ge 0, k \ge 0, k = min(i,j)$ } using P.L.
- 1. Assume that L is regular
- 2. Let N be the positive integer given by the Pumping Lemma
- 3. Let s be the string $s = a^N b^{N+1} c^N \in L$
- 4. Since $s \in L$ and $|s| \ge N$, s is split by PL into xyz, where $|xy| \le N$ and |y| > 0 and for all $i \ge 0$, $xy^iz \in L$
- 5. We choose i = 0; by PL: $xz = xz \in L$
- 6. Thus, $a^{N-|y|}b^{N+1}c^N$ would be \in L, but it's not since N-|y| < N < N+1
- 7. This is a contradiction, therefore L is not regular ■

1c, { $a^{i}b^{j}c^{k}$ | i≥0, j≥0, k≥0, j = i * k } using P.L.

- 1. Assume that L is regular
- 2. Let N be the positive integer given by the Pumping Lemma
- 3. Let s be the string $s = a^N b^N c \in L$
- 4. Since $s \in L$ and $|s| \ge N$, s is split by PL into xyz, where $|xy| \le N$ and |y| > 0 and for all $i \ge 0$, $xy^iz \in L$
- 5. We choose i = 0; by PL: $xz = xz \in L$
- 6. Thus, $a^{N-|y|}b^N c$ would be $\in L$, but it's not since (N-|y|) * 1 = N-|y| < N.
- 7. This is a contradiction, therefore L is not regular ■

1d, { $a^i b^j c^k$ | $i \ge 0$, $j \ge 0$, $k \ge 0$, if i=1 then j>k } using P.L.

- 1. This is one I would personally never choose to solve using the Pumping Lemma. Assume that L is regular. The problem is that, if I start with a single a, the PL might break my string up so y=a and now erasing it or increasing the number of a's is meaningless because there is no constraint on b's and c's when there is no a or many a's. Alternately, if I start with lots of a's, I have to guarantee I can reduce these to precisely one a. So what's a person to do, other than apply Myhill-Nerode? Well, there is a way because L is regular iff L^R is regular, so we can prove L^R is non-regular.
- 2. Let N be the positive integer given by the Pumping Lemma as regards L^R
- 3. Let s be the string $s = c^N b^{N+1} a \in L$
- 4. Since $s \in L$ and $|s| \ge N$, s is split by PL into xyz, where $|xy| \le N$ and |y| > 0 and for all $i \ge 0$, $xy^i z \in L$
- 5. We choose i = 2; by PL: $xz = xz \in L$
- 6. Thus, $c^{N+|y|}b^Na$ would be $\in L$, but it's not since $N+|y| \ge N+1$.
- 7. This is a contradiction, therefore L is not regular ■

10/15/2014

COT 4210 © UCF

1e, { w | w \in {a, b}* and w = w^R } using P.L.

- 1. Assume that L is regular
- 2. Let N be the positive integer given by the Pumping Lemma
- 3. Let s be the string $s = a^N b a^N \in L$
- 4. Since $s \in L$ and $|s| \ge N$, s is split by PL into xyz, where $|xy| \le N$ and |y| > 0 and for all $i \ge 0$, $xy^i z \in L$
- 5. We choose i = 0; by PL: $xz = xz \in L$
- 6. Thus, $a^{N-|y|}ba^N$ would $be \in L$, but it's not since $N-|y| \neq N$.
- 7. This is a contradiction, therefore L is not regular ■

1a, { $a^{Fib(k)} | k>0$ } using M.N.

We consider the collection of right invariant equivalence classes $[a^{Fib(j)}]$, j > 2.

It's clear that $a^{Fib(j)}a^{Fib(j+1)}$ is in the language, but $a^{Fib(k)}a^{Fib(j+1)}$ is not when k>2 and k≠j and k≠j+2

This shows that there is a separate equivalence class $[a^{Fib(j)}]$ induced by R_L , for each j > 2. Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular.

1b, { $a^{i}b^{j}c^{k}$ | $i \ge 0$, $j \ge 0$, $k \ge 0$, k = min(i,j) } using M.N.

We consider the collection of right invariant equivalence classes $[a^j]$, $j \ge 0$. It's clear that a^jc^j is in the language, but a^kc^j is not when $j \ne k$. This shows that there is a separate equivalence class $[a^j]$ induced by R_L , for each $j \ge 0$.

Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular. ■

1c, { $a^{i}b^{j}c^{k} | i \ge 0, j \ge 0, k \ge 0, j = i * k$ } using M.N.

We consider the collection of right invariant equivalence classes $[a^j]$, $j \ge 0$.

It's clear that $a^{j}b^{j}c$ is in the language, but $a^{k}b^{j}c$ is not when $j \neq k$

This shows that there is a separate equivalence class $[a^j]$ induced by R_L , for each $j \ge 0$. Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular.

1d, { $a^{i}b^{j}c^{k} | i \ge 0, j \ge 0, k \ge 0, if i=1$ then j > k } using M.N. We consider the collection of right invariant equivalence classes $[ab^{j}], j \ge 1$. It's clear that $ab^{j}c^{j-1}$ is in the language, but $ab^{m}c^{j-1}$ is not when m < jThis shows that there is a separate equivalence class $[a^{j}]$ induced by R_{L} , for each $j \ge 1$. Thus, the index of R_{L} is infinite and Myhill-Nerode states that L cannot be Regular.

1e, { w | w \in {a, b}* and w = w^R } using M.N.

We consider the collection of right invariant equivalence classes $[a^{j}b]$, $j \ge 0$.

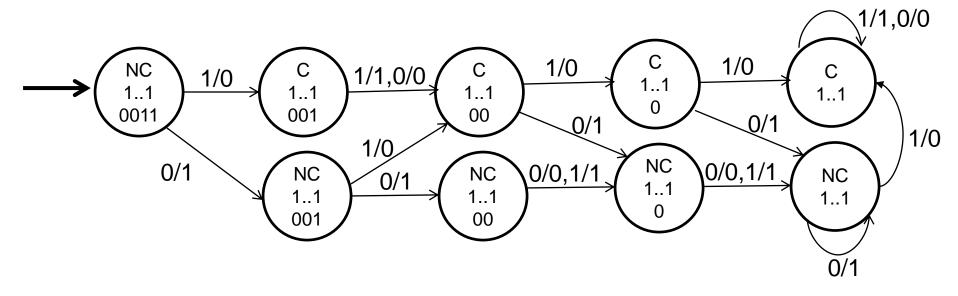
It's clear that $a^{j}ba^{j}$ is in the language, but $a^{k}ba^{j}$ is not when $j \neq k$

This shows that there is a separate equivalence class $[a^{j}]$ induced by R_{L} , for each $j \ge 0$. Thus, the index of R_{L} is infinite and Myhill-Nerode states that L cannot be Regular.

Assignment # 5.2

Write a Mealy finite state machine that produces the 2's complement result of subtracting 1101 from a binary input stream (assuming at least 3 bits of input)

Answer



Assignment # 5.3

Write a regular (right linear) grammar that generates the set of strings denoted by the regular expression $((10)^+ (011 + 1)^+)^* (0+101)^*$

```
\begin{array}{ll} G = (\{S,T,U\}, \, \{0,1\}, \, R, \, S) \\ R: & \\ & S & \rightarrow 10S \mid 10T \mid 0U \mid 101U \mid \lambda \\ & T & \rightarrow 011T \mid 1T \mid 011S \mid 1S \\ & U & \rightarrow 0U \mid 101U \mid \lambda \end{array}
```