Assignment # 1.1 Key

1. Prove or disprove that, for sets A and B, A=B if and only if $(A \cap \sim B) \cup (A \cap B) = A$

Part 1) Prove if A = B, then $(A \cap \sim B) \cup (A \cap B) = A$

Assume A=B then $(A \cap \sim B) \cup (A \cap B) = (A \cap \sim A) \cup (A \cap A)$

Now, any set intersected with its complement must be empty by the definition of complement, so $(A \cap \sim A) = \emptyset$ and $(A \cap A) = A$ and thus their union is also A, proving that A = B implies $(A \cap \sim B) \cup (A \cap B) = A$.

Part 2) Disprove if $(A \cap \sim B) \cup (A \cap B) = A$, then A = BAssume $(A \cap \sim B) \cup (A \cap B) = A$ and choose $B = \emptyset = \{\}$. Then $\sim B = Everything$ Now, $A \cap \sim B = A$, since the intersection of any set, A, with the entire universe of discourse is just A. Also, $A \cap B = \emptyset$, since the intersection of any set, A, with \emptyset is \emptyset . Now choose A to be any non-empty set and $(A \cap \sim B) \cup (A \cap B) = A$ whenever $B = \emptyset$. But then $A \neq B$, and the implication does not hold.

Bottom line is that this hypothesis is false.

Assignment # 1.2 Key

2. Prove that, for Boolean (T/F) variables P and Q, $((P \Rightarrow Q) \Rightarrow Q) \Leftrightarrow (P \lor Q)$

v is logical or; \Rightarrow is logical implication; \Leftrightarrow is logical equivalence.

Proof:

a) Let P be true then $(P \Rightarrow Q) = Q$ since, if Q is true we have $T \Rightarrow T = T$ and if Q is false we have $T \Rightarrow F = F$. Thus, when P = true, $((P \Rightarrow Q) \Rightarrow Q) = Q \Rightarrow Q = T$. Moreover, if P is true then so is P v Q, so we have T \Leftrightarrow T = T.

b) Let Q be true then $(P \Rightarrow Q) = T$ since, anything can imply true. Thus, when P = true, $((P \Rightarrow Q) \Rightarrow Q) = T \Rightarrow Q = T$.

Moreover, if Q is true then so is $P \lor Q$, so we have $T \Leftrightarrow T = T$.

c) The only remaining case is when P and Q are both false. If this is so then $(P \Rightarrow Q) \Rightarrow Q = (F \Rightarrow F) \Rightarrow F = T \Rightarrow F = F$ and P v Q = F v F = F, so we have F \Leftrightarrow F = T.

This covers all cases and so $((P \Rightarrow Q) \Rightarrow Q) \Leftrightarrow (P \lor Q)$ is a tautology.

Assignment # 1.3 Key

3. Prove, If S is any finite set with |S| = n, then $|S \times S \times S \times S \times S | \le |P(S)|$, for all $n \ge N$, where N is some constant, the minimum value of which you must discover and use as the basis for your proof.

Proof:

(This is the same as showing $n^5 \le 2^n$, for all $n \ge N$. We shall show this is true when N=23.)

Basis: $23^5 = 6,436,343 \le 8,388,608 = 2^{23}$. This proves the base case. Note: that $22^5 = 5,153,632$ and $2^{22} = 4,194,304$ and so N=22 fails.

```
I.H. Assume for some K, K \ge 23, K^5 \le 2^K.

I.S.(K+1) : (K+1)^5 = K^5 + 5K^4 + 10K^3 + 5K^2 + 1

\le K^5 + 5K^4 + 10K^4 + 5K^4 + K^4 since K \ge 1

= K^5 + 21K^4 \le K^5 + K^5 since K \ge 23

\le 2^K + 2^K by IH

= 2^{K+1}

Thus, (K+1)^5 \le 2^{K+1} and the I.S. is proven.
```

Assignment # 1.4 Key

4. Consider the function pair: N × N → N defined by pair(x,y) = 2^x (2y + 1) - 1 Show that pair is a bijection (1-1 onto N). Note: I already showed this is a surjection in the Sample, so your assignment is to show it is an injection (1-1), not just onto.
Proof:

Let (x,y) and (x',y') be two pairs of natural numbers such that *pair*(x,y) = pair(x,y'). This means that $2^{x}(2y+1) - 1 = 2^{x'}(2y'+1) - 1$ or equivalently that $2^{x}(2y+1) = 2^{x'}(2y'+1)$, but unique prime factorization says that all non-zero natural numbers can be uniquely factored as the product of primes. Said differently, each non-zero natural number can be factored into its even components (a unique power of 2) and its odd components (a product of unique odd primes).

Thus, $2^{x}(2y + 1) = 2^{x'}(2y' + 1)$ implies x = x' and y = y'. This shows that *pair* is an injection (1-1), as desired.