Assignment \# 1.1 Key

1. Prove or disprove that, for sets A and B, $A=B$ if and only if $(A \cap \sim B) \cup(A \cap B)=A$
Part 1) Prove if $A=B$, then $(A \cap B) \cup(A \cap B)=A$ Assume $A=B$ then $(A \cap \sim) \cup(A \cap B)=(A \cap \sim A) \cup(A \cap A)$
Now, any set intersected with its complement must be empty by the definition of complement, so $(A \cap \sim)=\varnothing$ and $(A \cap A)=A$ and thus their union is also A, proving that $A=B$ implies $(A \cap B) \cup(A \cap B)=A$.

Part 2) Disprove if $(A \cap B) \cup(A \cap B)=A$, then $A=B$
Assume $(A \cap \sim B) \cup(A \cap B)=A$ and choose $B=\varnothing=\{ \}$. Then $\sim B=$ Everything Now, $A \cap \sim B=A$, since the intersection of any set, A, with the entire universe of discourse is just A.
Also, $A \cap B=\varnothing$, since the intersection of any set, A, with \varnothing is \varnothing.
Now choose A to be any non-empty set and $(A \cap \sim) \cup(A \cap B)=A$ whenever $B=\varnothing$. But then $A \neq B$, and the implication does not hold.

Bottom line is that this hypothesis is false.

Assignment \# 1.2 Key

2. Prove that, for Boolean (T/F) variables P and Q,
$((P \Rightarrow Q) \Rightarrow Q) \Leftrightarrow(P \vee Q)$
v is logical or; \Rightarrow is logical implication; \Leftrightarrow is logical equivalence.

Proof:

a) Let P be true then $(P \Rightarrow Q)=Q$ since, if Q is true we have $T \Rightarrow T=T$ and if Q is false we have $T \Rightarrow F=F$. Thus, when $P=$ true, $((P \Rightarrow Q) \Rightarrow Q)=Q \Rightarrow Q=T$.
Moreover, if P is true then so is $P \vee Q$, so we have $T \Leftrightarrow T=T$.
b) Let Q be true then $(P \Rightarrow Q)=T$ since, anything can imply true. Thus, when $P=$ true, $((P \Rightarrow Q) \Rightarrow Q)=T \Rightarrow Q=T$.
Moreover, if Q is true then so is $P \vee Q$, so we have $T \Leftrightarrow T=T$.
c) The only remaining case is when P and Q are both false.

If this is so then $(P \Rightarrow Q) \Rightarrow Q=(F \Rightarrow F) \Rightarrow F=T \Rightarrow F=F$
and $P \vee Q=F \vee F=F$, so we have $F \Leftrightarrow F=T$.
This covers all cases and so $((P \Rightarrow Q) \Rightarrow Q) \Leftrightarrow(P \vee Q)$ is a tautology.

3. Prove, If S is any finite set with $|S|=n$, then $|S \times S \times S \times S \times S| \leq|P(S)|$, for all $n \geq N$, where N is some constant, the minimum value of which you must discover and use as the basis for your proof.

Proof:

(This is the same as showing $\mathrm{n}^{5} \leq 2^{\mathrm{n}}$, for all $\mathrm{n} \geq \mathrm{N}$. We shall show this is true when $\mathrm{N}=23$.)
Basis: $23^{5}=6,436,343 \leq 8,388,608=2^{23}$. This proves the base case. Note: that $22^{5}=5,153,632$ and $2^{22}=4,194,304$ and so $N=22$ fails.
I.H. Assume for some $K, K \geq 23, K^{5} \leq 2^{K}$.
I.S. $(K+1):(K+1)^{5}=K^{5}+5 K^{4}+10 K^{3}+5 K^{2}+1$
$\leq K^{5}+5 K^{4}+10 K^{4}+5 K^{4}+K^{4}$ since $K \geq 1$
$=K^{5}+21 K^{4} \leq K^{5}+K^{5}$ since $K \geq 23$
$\leq 2^{\mathrm{K}}+2^{\mathrm{K}}$ by IH
$=2^{K+1}$
Thus, $(K+1)^{5} \leq 2^{K+1}$ and the I.S. is proven.

Assignment \# 1.4 Key

4. Consider the function pair: $\mathbf{N} \times \boldsymbol{N} \rightarrow \mathbf{N}$ defined by pair $(\mathrm{x}, \mathrm{y})=2^{\mathrm{x}}(2 \mathrm{y}+1)-1$ Show that pair is a bijection (1-1 onto \boldsymbol{N}). Note: I already showed this is a surjection in the Sample, so your assignment is to show it is an injection (1-1), not just onto.

Proof:

Let (x, y) and (x^{\prime}, y^{\prime}) be two pairs of natural numbers such that $\operatorname{pair}(\mathrm{x}, \mathrm{y})=\operatorname{pair}\left(\mathrm{x}, \mathrm{y}^{\prime}\right)$. This means that $2^{\mathrm{x}}(2 \mathrm{y}+1)-1=2^{\mathrm{x}^{\prime}}\left(2 \mathrm{y}^{\prime}+1\right)-1$ or equivalently that $2^{x}(2 y+1)=2^{x^{\prime}}\left(2 y^{\prime}+1\right)$, but unique prime factorization says that all non-zero natural numbers can be uniquely factored as the product of primes. Said differently, each non-zero natural number can be factored into its even components (a unique power of 2) and its odd components (a product of unique odd primes).
Thus, $2^{x}(2 y+1)=2^{x}\left(2 y^{\prime}+1\right)$ implies $x=x^{\prime}$ and $y=y^{\prime}$. This shows that pair is an injection (1-1), as desired.

