COT4210.02, Fall 2001

S. Lang

Solution Key to Assignment #1

9/13/01

1. Use induction on n to prove that n! > n2 for integer n (4. (Recall the factorial notation n! defined as follows: 0! = 1, and for n (1, define n! = n (n –1)!.)

(Basis step) Consider n = 4. Since 4! = 24 > 16 = 42, the Basis step is proved.

(Induction hypothesis) Suppose k! > k2 for some integer k (4.

(Induction step) Prove (k +1)! > (k +1)2 --- (1)

Notice (k +1)!
= (k +1)k!, by the definition of factorial !

> (k + 1) k2 --- (2), by the Induction hypothesis

Also, notice that k2 (k = k(k – 1) > 1 when k (4, which implies k2 > k + 1 --- (3).

Combining (2) and (3) proves (k +1)! > (k + 1)(k + 1) = (k +1)2, so (1) is proved.

By induction, we proved that n! > n2 for integer n (4.

2. Binary trees can be constructed by the following rules (1) – (3):

(1) Basis: A single node is a binary tree; the node is the root of the tree.

(2) Recursion: A single node plus an edge connecting to a left subtree, and an edge connecting to a right subtree, is a binary tree; a subtree is either empty or itself a binary tree; each edge connects the node (call the root) to the root of the subtree if the subtree is not empty; either subtree could be empty in which case the corresponding edge is also absent.

(3) Closure: Every binary tree is constructed by the base step followed by zero or more recursive steps.

Informally, the level of a node in a binary tree counts the number of edges connecting the node to the tree’s root node. For example, the following figure shows a binary tree with the levels indicated next to the nodes A – F:

(Answer to a) Recursive definition of depth:

(Basis) When a binary tree T consists of a single node, define depth(T) = 0.

(Recursive step) When a binary tree T is constructed by connecting a root to a left-subtree L and a right-subtree R, where either L or R may be empty or a binary tree, there are 3 cases: (1) define depth(T) = 1 + max(depth(L), depth(R)) if both L and R are not empty; (2) define depth(T) = 1 + depth(L) if R is empty; and (3) define depth(T) = 1 + depth(R) if L is empty.

(Answer to b) We prove 2d + 1 (n + 1 for any binary tree with depth d and n nodes, using induction on d.

(Basis step) When the depth d = 0. In this case, the tree consists of a single node, so n = 1. Thus, 2d + 1 = 2 = n + 1.

(Induction hypothesis) Suppose 2d + 1 (n + 1 is true for any binary tree with depth d and n nodes, where d (k for some integer k (0. (In more plain words, we assume the inequality is true for any trees of depth up to k.)

(Induction step) Consider a tree T of depth k + 1. We need to prove 2k + 2 (n + 1 where n is the number of nodes in T. Since k + 1 (1, we assume T consists of a root node, a left-subtree L and right-subtree R (either L or R may be empty, but not both). We first consider the case that both subtrees are not empty. In this case, since depth(T) = 1 + max(depth(L), depth(R)) as defined in (a), so either depth(L) = k or depth(R) = k (or both). We only consider depth(L) = k because of the symmetry of the problem. Thus, depth(R) (k since depth(T) = k + 1. By the Induction hypothesis, 2k + 1 (p + 1 and 2k + 1 (q + 1 where p, q are the numbers of nodes of L, R, respectively. Note that 2k + 2 = 2(2k + 1) ((p + 1) + (q + 1) = n + 1 because p + q + 1 = n. Thus, we proved the desired inequality for trees T which have non-empty left- and right-subtrees. In the case that the left-subtree is empty, depth(R) = k since depth(T) = k + 1. Thus, the induction hypothesis implies 2k + 1 (q + 1 where R has q nodes. Thus, 2k + 2 = 2(2k + 1) (1 + 2k+ 1 (1+ (q + 1) = 1 + n. Thus, the inequality is proved for tree T in the case of an empty left-subtree. The last case when the right-subtree is empty is similar by symmetry. Therefore, we completed the induction step of the proof.

3. Give a recursive definition of the language L = {ai b j | 0 (i (j}.

(Basis) The empty string (belongs to L.

(Recursive step) (i) if string w belongs to L, then string awb belongs to L; and

(ii) if string w belongs to L, then string wb belongs to L.

(Closure) No strings belong to L unless they are constructed by the basis step followed by zero or more applications of the recursive steps.

Note: A formal proof that the language L generated by the above recursive definition is indeed equal to the set {ai b j | 0 (i (j} can be done in two steps: prove (1) L ({ai b j | 0 (i (j}, and (2) {ai b j | 0 (i (j} (L. Proving (1) can be done using induction on the number of times the recursive steps is used. Proving (2) can be semi-informally demonstrated by writing a typical string of L as w = ai b j = ai b i (b j(i), which shows w can be constructed by starting with the empty string (, apply rule (i) i times then rule (ii) (j (i) times.

4. Define two languages A and B as follows: A = {b, ba} and B = {(, a, bb}. (Note that the notation (denotes the empty string.) Answer each of the following questions:

(a) List the strings in AB and list the strings in BA.

AB = {b, ba, bbb, baa, babb}; BA = { b, ba, ab, aba, bbb, bbba}.

(b) List the strings in B* that are of length (3.
{(, a, bb, aa, aaa, abb, bba}

(c) Is the set A* (B* infinite? Explain your answer.

(Solution one) Note that strings of the form (bba)i = (b)(ba) (b)(ba) … (b)(ba) (i.e, (b)(ba) repeated i times) belong to A* because both b and ba belong to A. Similarly, (bba)i = (bb)(a)(bb)(a)… (bb)(a) (i.e, (bb)(a) repeated i times) belong to B* because both bb and a belong to B. Thus, the set A* (B* is infinite.

(Solution two) Note that the string (bb)i belongs to A* because b belongs to A. Also, the string (bb)i belongs to b* because bb belongs to B. Thus, A* (B* is infinite.

(d) Is it true that the string b(ab)n belongs to A* for all n (0? Explain your answer.

Note that b(ab)n
= b(ab)(ab) … (ab) (i.e. repeat string (ab) n times)

= (ba)(ba) … (ba)b (i.e. repeat string (ba) n times)

= (ba)nb , which obviously belong to A* because both ba and

 b belong to A.

A

B

C

D

E

F

(0)

(1)

(1)

(2)

(2)

(3)

Give a recursive definition of the depth of a binary tree.

The maximum level of the nodes in a binary tree is called the depth of the tree. Thus, the depth of the tree in the figure is 3. Use induction to prove that in a binary tree of n nodes and depth d, the relation 2d + 1 (n + 1 holds. (Hint: Use induction on the depth d, as defined from Part (a).)

