COT4210.02, Fall 2001






S. Lang


Solution Key to Assignment #1

9/13/01

1. Use induction on n to prove that n! > n2 for integer n ( 4.  (Recall the factorial notation n! defined as follows: 0! = 1, and for n ( 1, define n! = n (n –1)!.) 

(Basis step) Consider n = 4.  Since 4! = 24 > 16 = 42, the Basis step is proved.

(Induction hypothesis) Suppose k! > k2 for some integer k ( 4.

(Induction step) Prove (k +1)! > (k +1)2 --- (1)

Notice (k +1)! 
= (k +1)k!, by the definition of factorial !


> (k + 1) k2  --- (2), by the Induction hypothesis 

Also, notice that k2 ( k = k(k – 1) > 1 when k ( 4, which implies k2 > k + 1 --- (3).

Combining (2) and (3) proves (k +1)! > (k + 1)(k + 1) = (k +1)2, so (1) is proved.

By induction, we proved that n! > n2 for integer n ( 4.  

2. Binary trees can be constructed by the following rules (1) – (3):

(1) Basis: A single node is a binary tree; the node is the root of the tree.

(2) Recursion: A single node plus an edge connecting to a left subtree, and an edge connecting to a right subtree, is a binary tree; a subtree is either empty or itself a binary tree; each edge connects the node (call the root) to the root of the subtree if the subtree is not empty; either subtree could be empty in which case the corresponding edge is also absent.

(3) Closure: Every binary tree is constructed by the base step followed by zero or more recursive steps.

Informally, the level of a node in a binary tree counts the number of edges connecting the node to the tree’s root node.  For example, the following figure shows a binary tree with the levels indicated next to the nodes A – F: 


(Answer to a)  Recursive definition of depth:

(Basis) When a binary tree T consists of a single node, define depth(T) = 0.

(Recursive step) When a binary tree T is constructed by connecting a root to a left-subtree L and a right-subtree R, where either L or R may be empty or a binary tree, there are 3 cases: (1) define depth(T) = 1 + max(depth(L), depth(R)) if both L and R are not empty; (2) define depth(T) = 1 + depth(L) if R is empty; and (3) define depth(T) = 1 + depth(R) if L is empty.

(Answer to b) We prove 2d + 1 ( n + 1 for any binary tree with depth d and n nodes, using induction on d.

(Basis step) When the depth d = 0.  In this case, the tree consists of a single node, so n = 1.  Thus, 2d + 1 = 2 = n + 1.

(Induction hypothesis) Suppose 2d + 1 ( n + 1 is true for any binary tree with depth d and n nodes, where d ( k  for some integer k ( 0.  (In more plain words, we assume the inequality is true for any trees of depth up to k.)

(Induction step) Consider a tree T of depth k + 1.  We need to prove 2k + 2 ( n + 1 where n is the number of nodes in T.  Since k + 1 ( 1, we assume T consists of a root node, a left-subtree L and right-subtree R (either L or R may be empty, but not both).  We first consider the case that both subtrees are not empty.  In this case, since depth(T) = 1 + max(depth(L), depth(R)) as defined in (a), so either depth(L) = k or depth(R) = k (or both).  We only consider depth(L) = k because of the symmetry of the problem.  Thus, depth(R) ( k since depth(T) = k + 1.  By the Induction hypothesis, 2k + 1 ( p + 1 and 2k + 1 ( q + 1 where p, q are the numbers of nodes of L, R, respectively.  Note that 2k + 2 = 2(2k + 1) ( (p + 1) + (q + 1) = n + 1 because p + q + 1 = n.  Thus, we proved the desired inequality for trees T which have non-empty left- and right-subtrees.  In the case that the left-subtree is empty, depth(R) = k since depth(T) = k + 1.  Thus, the induction hypothesis implies 2k + 1 ( q + 1 where R has q nodes.  Thus, 2k + 2 = 2(2k + 1) ( 1 + 2k+ 1 ( 1+ (q + 1) = 1 + n.  Thus, the inequality is proved for tree T in the case of an empty left-subtree.  The last case when the right-subtree is empty is similar by symmetry.  Therefore, we completed the induction step of the proof.

3. Give a recursive definition of the language L = {ai b j | 0 ( i ( j}.

(Basis) The empty string ( belongs to L.

(Recursive step) (i) if string w belongs to L, then string awb belongs to L; and 

(ii) if string w belongs to L, then string wb belongs to L.

(Closure) No strings belong to L unless they are constructed by the basis step followed by zero or more applications of the recursive steps.

Note: A formal proof that the language L generated by the above recursive definition is indeed equal to the set {ai b j | 0 ( i ( j} can be done in two steps: prove (1) L ({ai b j | 0 ( i ( j}, and (2) {ai b j | 0 ( i ( j} ( L.  Proving (1) can be done using induction on the number of times the recursive steps is used.  Proving (2) can be semi-informally demonstrated by writing a typical string of L as w = ai b j = ai b i ( b j(i), which shows w can be constructed by starting with the empty string (, apply rule (i) i times then rule (ii) (j ( i) times.

4. Define two languages A and B as follows: A = {b, ba} and B = {(, a, bb}.  (Note that the notation ( denotes the empty string.) Answer each of the following questions:

(a) List the strings in AB and list the strings in BA.

AB = {b, ba, bbb, baa, babb}; BA = { b, ba, ab, aba, bbb, bbba}.

(b) List the strings in B* that are of length ( 3.
{(, a, bb, aa, aaa, abb, bba}

(c) Is the set A* ( B* infinite? Explain your answer.

(Solution one) Note that strings of the form (bba)i = (b)(ba) (b)(ba) … (b)(ba) (i.e, (b)(ba) repeated i times) belong to A* because both b and ba belong to A.  Similarly, (bba)i = (bb)(a)(bb)(a)… (bb)(a) (i.e, (bb)(a) repeated i times) belong to B* because both bb and a belong to B.  Thus, the set A* ( B* is infinite.

(Solution two) Note that the string (bb)i belongs to A* because b belongs to A.  Also, the string (bb)i belongs to b* because bb belongs to B.   Thus, A* ( B* is infinite.

(d) Is it true that the string b(ab)n belongs to A* for all n ( 0?  Explain your answer.

Note that b(ab)n 
= b(ab)(ab) … (ab) (i.e. repeat string (ab) n times) 


= (ba)(ba) … (ba)b (i.e. repeat string (ba) n times) 


=  (ba)nb , which obviously belong to A* because both ba and 

                 b belong to A.
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Give a recursive definition of the depth of a binary tree.


The maximum level of the nodes in a binary tree is called the depth of the tree.  Thus, the depth of the tree in the figure is 3.  Use induction to prove that in a binary tree of n nodes and depth d, the relation 2d + 1 ( n + 1 holds.  (Hint: Use induction on the depth d, as defined from Part (a).)








