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DeMorgan for Intersection

Example 10: Prove

n⋂

j=1

Aj =
n⋃

j=1

Aj

whenever A1, A2, . . . , An are subset of a universal U and
n ≥ 2.
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DeMorgan for Intersection
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DeMorgan for Intersection
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Creative Uses of Mathematical Induction

Example: Show that every 2n × 2n checkerboard with one
square removed can be tiled using L-shaped triominoes.
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Creative Uses of Mathematical Induction
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Strong Induction

Strong induction is based on the rule of inference

1. P (1)

2. ∀k (∧k
j=1

P (j) → P (k + 1))

3. ∴ ∀nP (n)

which is true for the domain of natural numbers N.
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Strong Induction

To prove that P (n) is true for all natural numbers n, where
P (n) is a propositional function, we complete two steps:

Basis step: We verify that P (1) is true.

We show that the conditional statement

k∧

j=1

P (j) → P (k + 1)

is true for all natural numbers k.
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Existence of Prime Factorization

Example: Show that if n is an integer greater than 1, then n
can be written as the product of primes.
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Existence of Prime Factorization
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Existence of Prime Factorization

Example 2: Show that if n is an integer greater than 1, then
n can be written as the product of primes.
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Winning Strategy

Example 3:
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Winning Strategy
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Winning Strategy
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Well-Ordering Property

The validity of both the principle of mathematical induction
and strong induction follows from a fundamental axiom of
set of integers, the well-ordering property.

THE WELL-ORDERING PROPERTY: Every nonempty set
of nonnegative integers has a least element.
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Division Algorithm

Example 5: Use the well-ordering property to prove the
division algorithm.
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Division Algorithm
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Cycles in Round-Robin Tournament

Example 6:
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Cycles in Round-Robin Tournament
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Recursive Definitions & Structural Induction

Sometimes it is difficult to define an object explicitly.
However, it may be easy to define this object in terms of
itself. This process is called recursion.
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Recursively Defined Functions

We use two steps to define a function with the set of
nonnegative integers as its domain:

Basis Step: Specify the value of the function at zero.

Recursive Step: Give a rule for finding its values
from its values at smaller integers.

Example 1: Suppose that is recursively defined by

f(0) = 3 ,

f(n + 1) = 2f(n) + 3 .

Find f(1), f(2), f(3), and f(4).
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Fibonacci numbers

Definition 1: The Fibonacci numbers f0, f1, f2, . . . are
defined by the equation f0, f1 = 1, and

fn = fn+1 + fn+2

for n = 2, 3, 4, . . ..
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Growth of the Fibonacci Numbers

Example 6: Show that whenever n ≥ 3, fn > αn−2, where
α = (1 +

√
5)/2.
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Growth of the Fibonacci Numbers
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Recursively Defined Sets and Structures

Example 7: Consider the subset S of integers defined by

Basis step: 3 ∈ S.

Recursive step: If x ∈ S and y ∈ S, then x + y ∈ S.
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Well-Formed Formulae

Example 10: We can define the set of well-formed formulae
for compound statement forms involving T, F, propositional
variables, and operators from the set {¬,∧,∨,→,↔}.

Basis step: T, F, and, s, where s is a propositional
variable, are well-formed formulae.

Recursive step: If E and F are well-formed formulae,
then (¬E), (E ∧ F ), (E ∨ F ), (E → F ), and (E ↔ F ) are
well-formed.
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Structural Induction

A proof by structural induction consists of two parts:

Show that the result holds for all elements in the
basis step of the recursive definition.

Show that if the statement is true for each of the
elements used to construct new elements in the
recursive step of the definition, the result holds for
these new elements.

The validity of structural induction follows from the
principle of mathematical induction of nonnegative
integers. To see this, let P (n) state that this claim is true
for all elements that are generated by n or few
applications of these rules.
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Structural Induction

Example 13: Show that every well-formed formulae for
compound propositions contains an equal number of left
and right parentheses.
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