

Intro to Discrete Structures Lecture 14

Pawel M. Wocjan

School of Electrical Engineering and Computer Science
University of Central Florida

wocjan@eecs.ucf.edu

Mathematical Induction

Mathematical induction is based on the rule of inference

1.
$$P(1)$$

2. $\forall k (P(k) \rightarrow P(k+1))$
3. $\therefore \forall n P(n)$

which is true for the domain of natural numbers \mathbb{N} .

Climbing an Infinite Ladder

- 1. We can reach the first rung of the ladder.
- 2. If we can reach a particular rung of the ladder, then we can reach the next rung of the ladder.
- 3. Therefore, we can reach any rung of the ladder.

Principle Mathematical Induction

To prove that P(n) is true for all natural numbers n, where P(n) is a propositional function, we complete two steps:

- **\blacksquare** Basis step: We verify that P(1) is true.
- We show that the conditional statement

$$P(k) \rightarrow P(k+1)$$

is true for all natural numbers k.

Warning

- In a proof of mathematical induction is is **not** assumed that P(k) is true for all k.
- It is only shown that **if it is assumed** that P(k) is true, then P(k+1) is also true.
- Thus, a proof of mathematical induction is not a case of begging the question, or circular reasoning.

Example: Show that

$$P(n) : \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Basis step
$$\sum_{i=1}^{n} i = 1 = \frac{1(1+1)}{2i} = 1$$

Let k be arbitrary. We show that
$$P(k) \longrightarrow P(k+1) \quad \text{is true.}$$

$$We assume that P(k) is true.$$

$$\sum_{k=1}^{k} i = \frac{k(k+1)}{2} \quad \text{we show to show that } P(k+1)$$

$$\lim_{k \to 1} i = \left(\frac{k}{2} + \frac{k}{2}\right) + \left(\frac{k+1}{2} + \frac{k}{2}\right) + \left(\frac{k+1}{2} + \frac{k}{2}\right)$$

$$\lim_{k \to 1} i = \left(\frac{k}{2} + \frac{k}{2}\right) + \left(\frac{k+1}{2}\right) + \left(\frac{k+1}{2}\right) + \left(\frac{k+1}{2}\right) = \frac{k(k+1)+2(k+1)}{2}$$

$$\lim_{k \to 1} i = \left(\frac{k}{2} + \frac{k}{2}\right) + \left(\frac{k+1}{2}\right) + \left(\frac{k+1}{2}\right) = \frac{k(k+1)+2(k+1)}{2}$$

odd

Example 2: Conjecture a formula for the sum of the first n positive integers. Then prove your conjecture using mathematical induction.

Find a formula for

$$\sum_{j=1}^{n} (-1)^j j$$

assume that
$$\Pi$$
 is even $\Pi = 2m$

$$\Pi = 1 \qquad -1$$

$$\Pi = 2 \qquad -1 + 2$$

$$\Pi = 3 \qquad -1 + 2 - 3$$

$$\Pi = 4 \qquad -1 + 2 - 3 + 4$$

$$\Pi = 5 \qquad -1 + 2 - 3 + 4 - 5$$

$$\Pi = 6 \qquad -1 + 2 - 3 + 4 - 5$$

$$-1 + 2 - 3 + 4 - 5 + 6$$

$$+1 + 2 + 7 + 4 + 5$$

$$\sum_{j=1}^{2m} (-1)^{j} = \left(\sum_{j=1}^{2m} j\right) - 2\sum_{j=0}^{m-1} (2j+1)$$

$$\frac{2m}{2j} = 1$$

$$\frac{2m}{2j} = 1$$

$$- 2\sum_{j=0}^{m-1} (2j+1)$$

$$- 2m^{2}$$

$$= 2m^{2} + m - 2m^{2} = m$$

The Number of Subsets of a Finite Set

$$|A| = \Pi$$

$$|P(A)| = 2\Pi$$

$$P(\phi) = |V|$$

$$P(A) = 2\Pi \quad \text{for } |A| = \Pi \quad A = \{1, 2, ..., n\}$$

$$B = A \cup \{n+1\} \quad |B| = |A| + |= n+1$$

The Number of Subsets of a Finite Set

We have to both at the subsets of B let C be a subset of B.

Either
$$11+1 \notin C$$
 or $11+1 \in C$
 $1 + 1 = 2^{-1} + 2^{-1}$

DeMorgan for Intersection

Example 10: Prove

$$\bigcap_{j=1}^{n} A_j = \bigcup_{j=1}^{n} \overline{A_j}$$

whenever A_1, A_2, \ldots, A_n are subset of a universal U and $n \geq 2$.

DeMorgan for Intersection

DeMorgan for Intersection

Creative Uses of Mathematical Induction

Example: Show that every $2^n \times 2^n$ checkerboard with one square removed can be tiled using L-shaped triominoes.

Strong Induction

Strong induction is based on the rule of inference

1.
$$P(1)$$

2. $\forall k (\wedge_{j=1}^k P(j) \rightarrow P(k+1))$
3. $\therefore \forall n P(n)$

which is true for the domain of natural numbers \mathbb{N} .

Strong Induction

To prove that P(n) is true for all natural numbers n, where P(n) is a propositional function, we complete two steps:

- Basis step: We verify that P(1) is true.
- We show that the conditional statement

$$\bigwedge_{j=1}^{k} P(j) \to P(k+1)$$

is true for all natural numbers k.

Existence of Prime Factorization

Example: Show that if n is an integer greater than 1, then n can be written as the product of primes.

Existence of Prime Factorization

Existence of Prime Factorization

Example 2: Show that if n is an integer greater than 1, then n can be written as the product of primes.

Winning Strategy

Example 3:

Winning Strategy

Winning Strategy

Universal generalization Q(c) hold for an arbitrary c from the domain $\therefore \forall c \ Q(c)$

 $\forall k (P(k) \longrightarrow \emptyset P(k+1))$

P(n):
$$\sum_{i=0}^{\infty} (2i+1) = n^2$$
 is covered.

Conjecture: $\sum_{i=0}^{n-1} (2i+1) = n^2$

Rasis step V

We assume $\sum_{i=0}^{k} (2i+1) = k^2$ holds.

We have by show that $\sum_{i=0}^{k} (2i+1) = (k+1)^2$

$$\sum_{i=0}^{K} (2i+1) = (k+1)^{2i}$$

$$\sum_{i=0}^{K} (2i+1) = \left[\sum_{i=0}^{K-1} (2i+1)\right] + 2k+1$$

$$= k^{2i} + 2k+1$$

$$= (k+1)^{2i}$$

$$B = A \cup \{x\} \qquad x \notin A$$

$$P(B) = P(A) \cup B \setminus \{x\}$$

$$\{S \cup \{x\} \mid S \in P(A)\}$$

$$A = \{1,2\} \qquad \{ = \{1,2,3\} \}$$

$$P(A) = \{ \phi, \{1\}, \{2\}, \{1,2\} \}$$

$$\{ S \cup \{3\} \mid S \in P(A) \}$$

$$= \{ \phi \cup \{3\}, \{1\} \cup \{3\}, \{2\} \cup \{3\}, \{1,2\} \cup \{3\} \}$$

$$= \{ \{3\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$$