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Mathematical Induction

-

Mathematical induction is based on the rule of inference

-

1. P(1)
2. Vk (P(k) — P(k+1))
3. .. VnP(n)

which is true for the domain of natural numbers N.
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Climbing an Infinite Ladder

- N

1. We can reach the first rung of the ladder.

2. If we can reach a particular rung of the ladder, then we
can reach the next rung of the ladder.

3. Therefore, we can reach any rung of the ladder.
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Principle Mathematical Induction

-

To prove that P(n) Is true for all natural numbers n, where
P(n) Is a propositional function, we complete two steps:

-

o Basis step: We verify that P(1) IS true.

® We show that the conditional statement
P(k) — P(k+1)

IS true for all natural numbers k.
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Intro to Discrete StructuresLecture 14 — p. 4/42



Warning
- -

# In a proof of mathematical induction is is not assumed
that P(k) Is true for all %.

# Itis only shown that if it iIs assumed that P(k) Is true,
then P(k + 1) Is also true.

# Thus, a proof of mathematical induction is not a case of
begging the guestion, or circular reasoning.
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-

Example: Show that

Example
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Example

- 0dd

Example/: Conjecture a formula for the sum of the first n
positive ‘integers. Then prove your conjecture using
mathematical induction.




Example
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Example
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The Number of Subsets of a Finite Set

Al =n .
Pl =

%:Au{ﬂﬂ} | B| = |Al+] = n+l
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The Number of Subsets of a Finite Set
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DeMorgan for Intersection

. N

xample 10: Prove

whenever Ay, As, ..., A, are subset of a universal U and
n > 2.



DeMorgan for Intersection

- N



DeMorgan for Intersection

- N



Creative Uses of Mathematical Induction

o N

Example: Show that every 2" x 2" checkerboard with one
sguare removed can be tiled using L-shaped triominoes.
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Creative Uses of Mathematical Induction

- N



Strong Induction

-

Strong induction is based on the rule of inference

1. PQ)
2. Vk (NE_ P(j) — P(k + 1))
3. .. VnP(n)

which is true for the domain of natural numbers N.

o |
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Strong Induction

-

To prove that P(n) Is true for all natural numbers n, where
P(n) Is a propositional function, we complete two steps:

-

o Basis step: We verify that P(1) IS true.

® We show that the conditional statement

k
P(j) — P(k+1)
=1

J

IS true for all natural numbers k.
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Existence of Prime Factorization

-

Example: Show that if n Is an integer greater than 1, then n
can be written as the product of primes.

-

o |
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Existence of Prime Factorization

- N



Existence of Prime Factorization

-

Example 2: Show that if n Is an integer greater than 1, then
n can be written as the product of primes.

-
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Intro to Discrete StructuresLecture 14 — p. 23/42



Winning Strategy
-

Example 3:



Winning Strategy



Winning Strategy
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