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The Euclidean Algorithm

Lemma 1: Let a = bq + r, where a, b, q, and r are integers.
Then

gcd(a, b) = gcd(b, r) .
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The Euclidean Algorithm
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The Euclidean Algorithm

Example 12: Find gcd(414, 662) using the Euclidean
Algorithm.
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Some Useful Facts

Theorem 1:

∀a∀b ∃s ∃t gcd(a, b) = sa + tb .

The pair (s, t) can be efficiently computed with the extended
Euclidean algorithm.
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The Extended Euclidean Algorithm

Example 1: Express gcd(252, 198) = 18 as a linear
combination of 252 and 198.

252 = 1 · 198 + 54

198 = 3 · 54 + 36

54 = 1 · 36 + 18

36 = 2 · 18
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Some Useful Facts

Lemma 2: If p is a prime and p | a1a2 · · · an, where each ai is
an integer, then p | ai for some i.
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Some Useful Facts

Lemma 1:
gcd(a, b) = 1 ∧ a | bc ⇒ a | c

Proof of the uniqueness of the prime factorization of a
positive integer:
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Mathematical Induction

Mathematical induction is based on the rule of inference

1. P (1)

2. ∀k (P (k) → P (k + 1))

3. ∴ ∀nP (n)

which is true for the domain of natural numbers N.
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Climbing an Infinite Ladder

1. We can reach the first rung of the ladder.

2. If we can reach a particular rung of the ladder, then we
can reach the next rung of the ladder.

3. Therefore, we can reach any rung of the ladder.
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Principle Mathematical Induction

To prove that P (n) is true for all natural numbers n, where
P (n) is a propositional function, we complete two steps:

Basis step: We verify that P (1) is true.

We show that the conditional statement

P (k) → P (k + 1)

is true for all natural numbers k.
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Warning

In a proof of mathematical induction is is not assumed
that P (k) is true for all k.

It is only shown that if it is assumed that P (k) is true,
then P (k + 1) is also true.

Thus, a proof of mathematical induction is not a case of
begging the question, or circular reasoning.
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Example

Example: Show that

n∑

i=1

i =
n(n + 1)

2
.
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Example
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Example

Example 2: Conjecture a formula for the sum of the first n

positive integers. Then prove your conjecture using
mathematical induction.
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Example
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The Number of Subsets of a Finite Set
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The Number of Subsets of a Finite Set
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DeMorgan for Intersection

Example 10: Prove

n⋂

j=1

Aj =
n⋃

j=1

Aj

whenever A1, A2, . . . , An are subset of a universal U and
n ≥ 2.
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DeMorgan for Intersection
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DeMorgan for Intersection
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Creative Uses of Mathematical Induction

Example: Show that every 2n × 2n checkerboard with one
square removed can be tiled using L-shaped triominoes.
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Creative Uses of Mathematical Induction
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Strong Induction

Strong induction is based on the rule of inference

1. P (1)

2. ∀k (∧k
j=1

P (j) → P (k + 1))

3. ∴ ∀nP (n)

which is true for the domain of natural numbers N.
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Strong Induction

To prove that P (n) is true for all natural numbers n, where
P (n) is a propositional function, we complete two steps:

Basis step: We verify that P (1) is true.

We show that the conditional statement

k∧

j=1

P (j) → P (k + 1)

is true for all natural numbers k.
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Existence of Prime Factorization

Example: Show that if n is an integer greater than 1, then n

can be written as the product of primes.
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Existence of Prime Factorization
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Existence of Prime Factorization

Example 2: Show that if n is an integer greater than 1, then
n can be written as the product of primes.
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Winning Strategy

Example 3:
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Winning Strategy
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Winning Strategy
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