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Division

Definition 1: If a, b ∈ Z with a 6= 0, we say that a divides b if
there exists c ∈ Z such that b = ac.

When a divides b we say that a is a factor of b and that b is
a multiple of a.

The notation a | b denotes that a divides b. We write a 6| b if a
does not divide b.

a | b if and only if ∃c (ac = b)
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Integers Divisible byd

Example 2: Let n and d be positive integers. How many
positive integers not exceeding n are divisible by n?
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Integers Divisible byd

Example 2: Let n and d be positive integers. How many
positive integers not exceeding n are divisible by n?

This equals the number of integers k with

0 < dk ≤ n, or equivalently, with 0 < k ≤ n/d .

Therefore, there are ⌊n/d⌋ positive integers not exceeding n
that are divisible by d.
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Properties of the Divides Relation

Theorem 1: Let a, b, and c be integers. Then

a | b ∧ a | c ⇒ a | b + c

a | b ⇒ ∀c (a | bc)

a | b ∧ b | c ⇒ a | c

Corollary 1:

a | b ∧ a | c ⇒ ∀m∀n (a | mb + nc)
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The Division Algorithm

Theorem 2: Let a be an integer and d a positive integer.
Then there are unique integers q and r, with 0 ≤ r < d, such
that a = dq + r.

Quotient
q = a div d = ⌊a/d⌋

Remainder
r = a mod d = a − dq
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Modular Arithmetic

Definition 3: If a and b are integers and m is a positive
integer, then a is congruent b modulo m if m divides a − b.

We use the notation a ≡ b (mod m) to indicate that a is
congruent to b modulo m.

If there are not congruent, then we write a 6≡ b (mod m)

a ≡ b (mod m) if and only if m | a − b
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Modular Arithmetic
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Modular Arithmetic
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Modular Arithmetic
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Modular Arithmetic
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Primes

Definition 1: A positive integer p greater than 1 is called
prime if the only positive integers of p are 1 and p.

A positive integer p greater than 1 and is not prime is called
coprime.

http://en.wikipedia.org/wiki/Prime_number
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The Fundamental Theorem of Arithmetic

Theorem 1: Every positive integer greater than 1 can be
written uniquely as a prime or as the product of two or more
primes where the prime factors are written in order of
nondecreasing size.
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Bound on Largest Prime Factor

Theorem 2: If n is a composite integer, then n has a prime
divisor less than or equal to

√
n.
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The Infinitude of Primes

Theorem 3: There are infinitely many primes.
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Greatest Common Divisor

Definition 2: Let a and b be integers, not both zero. The
largest integer d such that d | a and d | b is called the
greatest common divisor of a and b.

It is denoted by gcd(a, b).
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Least Common Multiple

Definition 5: Let a and b be integers, not both zero. The
smallest positive d such that a | d and b | d is called the
smallest common multiple of a and b.

It is denoted by lcm(a, b).
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Prime Factorization/Gcm/Lcm

Let a and b be two positive integers and

a = pe1

1 pe2

2 · · · pen

n =
n∏

j=1

p
ej

j

b = pf1

1 pf2

2 · · · pfn

n =
n∏

j=1

p
fj

j

their prime factorizations.
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Prime Factorization/Gcm/Lcm

Then, the greatest common divisor and the least common
multiple are given by

gcd(a, b) = p
min(e1,f1)
1 p

min(e2,f2)
2 · · · pmin(en,fn)

n =
n∏

j=1

p
min(ej ,fj)
j

lcm(a, b) = p
max(e1,f1)
1 p

max(e2,f2)
2 · · · pmax(en,fn)

n =
n∏

j=1

p
max(ej ,fj)
j

We also have the identity

ab = gcd(a, b) · lcm(a, b) .
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The Euclidean Algorithm

Lemma 1: Let
a = bq + r

where a, b, q, and r are integers. Then

gcd(a, b) = gcd(b, r) .
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The Euclidean Algorithm
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The Euclidean Algorithm

Example 12: Find gcd(414, 662) using the Euclidean
Algorithm.
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Some Useful Facts

Theorem 1:

∀a∀b ∃s ∃t gcd(a, b) = sa + tb .

The pair (s, t) can be efficiently computed with the extended
Euclidean algorithm.
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Some Useful Facts

Lemma 2: If p is a prime and p | a1a2 · · · an, where each ai is
an integer, then p | ai for some i.
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Some Usful Facts

Lemma 1:
gcd(a, b) = 1 ∧ a | bc ⇒ a | c

Proof of the uniqueness of the prime factorization of a
positive integer:
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Mathematical Induction
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