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Factorial Function

The factorial function f : N → Z+ is denoted by f(n) = n!.

The value of f(n) = n! is the product of the first n positive
integers, so

n! = 1 · 2 · · · (n − 1) · n

and 0! = 1.
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(Strictly) Increasing / Decreasing

Definition 6: Let f : A → B with A,B ⊆ R.

The function f is called

increasing if

f(x) ≤ f(y)

strictly increasing if

f(x) < f(y)

whenever x < y.
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Addition / Multiplication of Functions

Definition 3: Let f1, f2 : A → R.

Then f1 + f2 and f1f2 are also functions from A to R defined
by

(f1 + f2)(x) = f1(x) + f2(x) , (1)

(f1f2)(x) = f1(x)f2(x) . (2)
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Sequences and Summations
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Sequences

Definition 1: A sequence is a function from a subset of the
set of integers (usually the set {0, 1, 2, . . .} or the set
{1, 2, 3, . . . , }) to a set S.

We use the notation an to denote the image of the integer n.

We call an a term of the sequence.

Example 1: Consider the sequence {an} with an = 1/n.
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Geometric Progression

Definition 2: A geometric progression is a sequence of
the form

a, ar, ar2, . . . , arn, . . .

where the initial term a and the common ratio r are real
numbers.

Remark: A geometric progression is a discrete analogue of
the exponential function f : R → R, x 7→ arx.
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Arithmetic Progression

Definition 2: An arithmetic progression is a sequence of
the form

a, a + d, a + 2d, . . . , a + nd, . . .

where the initial term a and the common difference r are
real numbers.

Remark: A geometric progression is a discrete analogue of
the linear function f : R → R, x 7→ dx + a.

Intro to Discrete StructuresLecture 11 – p. 8/29



The Tower of Hanoi

We are given a tower of n discs, initially stacked in
decreasing size on one of three pegs:

The objective is to transfer the entire tower to one of the
other pegs, moving only one disc at a time and never
moving a larger one onto a smaller.

Find a simple expression for Tn, the number of minimal
moves required to accomplish this.
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Slicing Pizza

How many slices of pizza can a person obtain by making n
straight cuts with a pizza knife?

Or, more academically: What is the maximum number of Ln

of regions defined by n lines in the plane?

Find a simple expression for Ln.
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The Josephus Problem

We start with n people numbered 1 to n around a circle, and
we eliminate every second remaining person until only one
survives. Denote this person by Jn. For example, here’s the
starting configuration for n = 10.

The elimination order is 2, 4, 6, 8, 10, 3, 7, 1, 9, so J10 = 5
survives.
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Solution to the Josephus Problem

Find a (closed form) formula for an that makes it possible to
efficiently compute Jn for large n.
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Solution to the Josephus Problem

Find a (closed form) formula for Jn that makes it possible to
efficiently compute Jn for large n.

Every n ∈ N can be uniquely written as

2m + ℓ with m ≥ 0 and 0 ≤ ℓ < 2m.

Observe that m = ⌊log2 n⌋ and ℓ = n − 2m.

The solution is

Jn = 2ℓ + 1 .
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Summation

We now introduce summation notation. We begin by
describing the notation used to express the sum of the
terms

am, am+1, . . . , an ,

from the sequence {an}.

We use the notation

n
∑

j=m

aj ,
∑n

j=m aj, or
∑

1≤j≤n aj

to represent am + am+1 + . . . + an.
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Summation

n
∑

j=m

aj

Here the variable j is called the index of summation, and
the choice of letter as the variable is arbitrary.

The index of summation runs through all integers starting
with its lower limit m and ending with its upper limit n.

A large upper case Greek letter sigma, Σ, is used to
denote the summation.
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Geometric sums

Theorem 1: If a and r are real numbers and r 6= 0, then

n
∑

j=0

arj =

{

an+1
−a

r−1
if r 6= 1

(n + 1)a if r = 1
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Cardinality

Definition 4: The sets A and B have the same cardinality
iff there is a bijection from A to B.
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Countable vs. Uncountable

Definition 5: A set that either finite or has the same
cardinality as the set of natural numbers N = {1, 2, 3, . . .} is
called countable.

A set that is not countable is called uncountable.

The cardinality of a finite set S is denoted by |S|.

When an infinite set S is countable, we denote the
cardinality of S by ℵ0. We write |S| = ℵ0 and say that S has
cardinality “aleph null”.
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Odd Numbers

Example 18: Show that the set of odd natural numbers is a
countable set.
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Integers

Example 19: Show that the set Z of all integers is countable.
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Rational Numbers

Example 19: Show that the set Q+ of positive rational
numbers is countable.
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Real Numbers

Example 21: Show that the set R of real numbers is
uncountable.
Assume the contrary. Then, there is a bijection N → [0, 1)

r1 = d11d12d13d14 . . .

r2 = d21d22d23d24 . . .

r3 = d31d32d33d34 . . .

r4 = d41d42d43d44 . . .
...

The decimal expansion ri =
∑∞

j=1
dij/10j is unique provided

we exclude that we disallows infinite tails 999 . . . in the
expansions.
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Real Numbers
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Cantor Diagonalization Argument

Form a new real number with decimal expansion
r = 0.d1d2d3d4 . . . where the decimal digits are determined
by the following rule:

di =

{

4 if dii 6= 4

5 if dii = 4
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Halting Problem

In computability theory, the halting problem is a decision
problem which can be stated as follows: given a description
of a program, decide whether the program finishes running
or will run forever. This is equivalent to the problem of
deciding, given a program and an input, whether the
program will eventually halt when run with that input, or will
run forever.

Alan Turing proved in 1936 that a general algorithm to solve
the halting problem for all possible program-input pairs
cannot exist.
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Gödel’s Incompleteness Theorem

Gödel’s incompleteness theorems are two theorems of
mathematical logic that establish inherent limitations of all
but the most trivial axiomatic systems for mathematics. The
theorems, proven by Kurt Gödel in 1931, are important both
in mathematical logic and in the philosophy of mathematics.

The first incompleteness theorem states that no consistent
system of axioms whose theorems can be listed by an
"effective procedure" (essentially, a computer program) is
capable of proving all facts about the natural numbers. For
any such system, there will always be statements about the
natural numbers that are true, but that are unprovable within
the system.
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Book

Gödel, Escher, Bach by D. R. Hofstadter
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