Intro to Discrete Structures Lecture 10

Pawel M. Wocjan

School of Electrical Engineering and Computer Science

University of Central Florida

wocjan@eecs.ucf.edu

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Membership Table

Generalized Union

Definition 6: The **union** of a collection of sets is the set that contains those element that are members of at least one set in the collection.

We use the notation

$$A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i$$

to denote the union of the sets A_1, A_2, \dots, A_n . $\chi \in \bigcup_{i=1}^{n} A_i \longleftrightarrow \chi \in A_i \lor \chi \in A_2 \lor \dots \lor \chi \in A_n$

Generalized Intersection

Definition 6: The **intersection** of a collection of sets is the set that contains those element that are members of all sets in the collection.

We use the notation

$$A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i$$

to denote the intersection of the sets A_1, A_2, \dots, A_n . $\chi \in \bigcap_{i=1}^{n} A_i \iff \chi \in A_1 \land \chi \in A_2 \land \dots \land \chi \in A_n$

Functions

Definition 1: Let A and B be nonempty sets.

A function *f* from *A* to *B* is an assignment of exactly one element of *B* to each element *A*.

We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

We write $f : A \rightarrow B$ if f is a function from A to B.

SIn(x)

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Functions

Domain / Codomain

Definition 2: If $f:A \rightarrow B$, we say that A is the **domain** and B the **codomain** of F.

If f(a) = b, we say that *b* is the **image** of *a* and *b* is the preimage of \cancel{b} . \bigcirc

The **range** of f is the set of all images of elements of A.

If $f: A \to B$, we also say that f maps from A to B.

Image

Injective Functions

Definition 5: The function $f : A \rightarrow B$ is called **injective** or **one-to-one** iff

$$\forall a \in A \forall b \in A (f(a) = f(b) \rightarrow a = b).$$
Sin : $\mathbb{R} \longrightarrow [-1, 1]$ not injective
Sin : $\mathbb{E} 0, \mathbb{N}_{\overline{2}} \longrightarrow [-1, 1]$ injective
$$(1, 1) \longrightarrow [-1, 1] = 1$$

Surjective Functions

Definition 7: The function $f : A \rightarrow B$ is called **surjective** or **onto** iff

 $\forall b \in B \exists a \in A (f(a) = b)).$ Sin: $\mathbb{R} \longrightarrow \mathbb{R}$ not surjective Sin: $\mathbb{R} \longrightarrow [-1, 1]$ surjective

Bijective Function

Definition 8: The function $f : A \rightarrow B$ is called **bijective** if it is both surjective and injective.

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Inverse Function

Definition 9: Let $f : A \rightarrow B$ be a bijective function.

Then, the **inverse function** f^{-1} is the function from B to A that assigns to $b \in B$ the unique element $a \in A$ such that f(a) = b.

Composition of Functions

Let $g : A \to B$ and $f : B \to C$. The **composition** of the functions f and g, denoted by $(f \circ g)$, is defined by

Intro to Discrete StructuresLecture 10 – p. 14/33

Composition of f and f^{-1}

f: A -> B bijective idg: 5'K->K iolA: {A->A a ->a $f^{-1}of^{-1}a \mapsto a$ $f \circ f^{-1}$; $B \rightarrow B$ $b \rightarrow b$ $(f^{-\prime}of)(a) = a$ $= f^{-\prime}(f(a))$ $(f \circ f^{-1})(b) = b$ $\Box f \circ f^{-1} = id B$

Graphs of Functions

Let $f : A \rightarrow B$. The graph of the function f is the subset of $A \times B$ defined by

 $\{(a,b) \in A \times B \mid f(a) = b\}.$

 $\mathbb{Z} \times \mathbb{Z}$

Floor and Ceiling Functions

Definition 12: The **floor function** assigns to the real number x the largest integer that is less or equal to x.

The value of the floor function is denoted by $\lfloor x \rfloor$.

The **ceiling function** assigns to the real number x the smallest integer that is greater or equal to x.

The value of the ceiling function is denoted by $\lceil x \rceil$.

[[] = 3] [] = 4][] = 2] [] = 2]

Functions Graphs of Floor and Ceiling

Factorial Function

The factorial function $f : \mathbb{N} \to \mathbb{Z}^+$ is denoted by f(n) = n!.

The value of f(n) = n! is the product of the first n positive integers, so

$$n! = 1 \cdot 2 \cdots (n-1) \cdot n$$

and f(0) = 1.

(Strictly) Increasing / Decreasing

Definition 6: Let $f : A \to B$ with $A, B \subseteq \mathbb{R}$.

The function f is called

increasing if

 $f(x) \le f(y)$

strictly increasing if

f(x) < f(y)

whenever x < y.

Addition / Multiplication of Functions

Definition 3: Let $f_1, f_2 : A \to \mathbb{R}$.

Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to \mathbb{R} defined by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x),$$
 (1)

$$(f_1 f_2)(x) = f_1(x) f_2(x).$$
 (2)

Sequences and Summations

Summation

 $sin: \mathbb{R} \longrightarrow \mathbb{R}$ $\sin(R) = [-1, 1]$

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

