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SEets f12]= {21}

fDeﬁmtlon 1. Asetisan unordered collection of objects.

Definition 2: The objects of a set are called the elements
or members , of the set.

A set Is said to contain Its elements.

We use the notation

re A

to Indicate that z 1s an element of the set A.
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Example of Sets
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Sets
-

Definition 3: Two sets are equal if and only if they have the
same elements. That is, if A and B are sets, then A and B

are equal iff |5E&MO)CA

V:L':EEASH). 3€A :IfQ/@SQ

We write A = B if A and B are equal sets. 6{A rue
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Subset
| -

Definition 4: The set A Is said to be a subset of B iff every
element of A Is also an element of B.

We use
ACRB

to indicate that A Is a subset of B.

We see that A C B iff the quantification

Ve(x € A — x € B)

IS true.
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Venn Diagrams
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Sets

fTheorem 1. For every set S, we have
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Proper Subset
-

When we wish to emphasize that a set A is a subset of the
set B but A # B, we write A C B and say that A is a proper
subset of B.

-

Vi(re A—-x e B)Adx(x € BAx ¢ A)
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Infinite Sets

-

Definition 6: A set is said to be infinite |If it is not finite.
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The Power Set
-

Definition 7: Given a set S, the power set is the set of all
subsets of S. The power set of S is denoted by P(S5).

-

Example 13: What is the power set of {0,1,3}7?

The power set P({0,1,3}) Is the set of all subset of {0, 1, 3}.
Hence,
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Cartesian Products

-

Definition 8: The ordered n-tuple (ay,ao,...,ay,) Is the
ordered collection that has a7 as its first element, as as its
second element, ..., and a,, as its nth element.

-
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Cartesian Products
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Definition 9: Let A and B be sets. The Cartesian product
of A and B, denoted by A x B, Is the set of all ordered pairs
(a,b) where a € Aand b € B. Hence,

Ax B={(a,b)|lac ANbeE B}.

More generally, let A, Ao, ..., A, be sets. The Cartesian
product of Ay, Ao, ..., A, IS the set

A1 xAgx...xA, ={(a1,a2,...,an)|a; € Afori=1,2,....,n}.
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Union

-

Definition 1: The union of the sets A and B Is the set

-

AUB={x|v € AVx € B}.

N
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Intersection h
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-

Definition 1: The intersection of the sets A and B Is the set

-

ANB={z|lx e ANx € B}.
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Venn Diagrams
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Disjoint Sets

-

Definition 3: Two setfA and B are called disjoint iff their
Intersection is empty, that is,

-

AN B =10.

o |

Intro to Discrete StructuresLecture 9 — p. 16/26



Produced with a Trial Version of PDF Annotator - www.PDFANnnotator.com

Difference

o N

Definition 4: The difference of the sets A and B Is the set

A-B={x|lxr € ANx & B}.

The difference of A and B is also called the complement
of B respectto A.

Definition 5: Let U be the universal set. The complement
of A Is the set

We have

L A={z|z ¢ A}. J
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Set ldentities |
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Example

-

Prove De Morgan law AN B = AU B. T

x| xeAnBE obd of complomns
{x|7(xeAnky of of €

s x| xeANn Xéﬁ)ﬁ
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Membership Table

BUC

AN(BUCQC)

ANB

ANC

(ANB)U(ANC)
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Generalized Union

fDeﬁnition 6: The union of a collection of sets is the set thatT
contains those element that are members of at least one
set in the collection.

We use the notation

n

Alquu...uAn:UAi
1=1

to denote the union of the sets Ay, A, ..., A,,.
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Generalized Intersection

fDeﬁnition 6: The intersection of a collection of sets is the T
set that contains those element that are members of all sets

In the collection.

We use the notation

n

AmAzm...mAn:ﬂAi
1=1

to denote the intersection of the sets A, Ay, ..., A,,.
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