Intro to Discrete Structures Lecture 8

Pawel M. Wocjan

School of Electrical Engineering and Computer Science

University of Central Florida

wocjan@eecs.ucf.edu

Proof Strategy

• We have seen two important methods for proving theorems of the form $\forall x(P(x) \rightarrow Q(x))$.

These two methods are

- the direct proof and
- the indirect proof

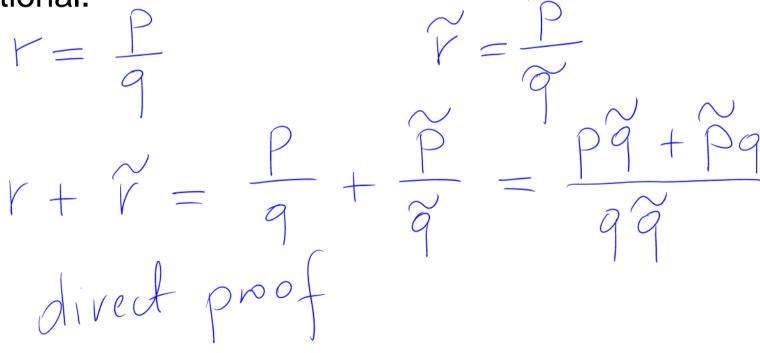
methods.

- It takes some practice (solving homework problems) to learn to recognize quickly the correct approach.
- Try first the direct approach. If it does not work then try the indirect approach.

Direct or Indirect Proof?

Definition: The real number r is **rational** if there exist integers p and q with $q \neq 0$ such that r = p/q.

Example 7: Prove that the sum of two rational numbers is rational.



Direct or Indirect Proof? Example 8: Prove that if n is an integer and n^2 is odd, then n is odd. $p \rightarrow q \equiv 7 q \rightarrow 7$ Means If П is even, then n² is even. $\pi^2 = (2k) = 4k^2 = 2 \cdot 2k^2$ n = 2k

Proof by Contradiction I

- Suppose we want to prove that p is true.
- Furthermore, suppose that we can find a contradiction q such that

 $\neg p \rightarrow q$

is true.

Because q is false, but $\neg p \rightarrow 0$ is true, we can conclude that $\neg p$ is false, which means that p is true.

Proof by Contradiction II

The statement

 $(r \land \neg r)$

is a contradiction whenever r is a proposition.

Therefore, we can prove that p is true if we can show that

$$\neg p \to (r \land \neg r)$$

is true for some proposition r.

Proof by Contradiction III

Example 9: Show that at least four of any 22 days must fall on the same day of the week.

Proof by Contradiction IV

- *p* : At least four of 22 days chosen fall on the same day of the week.
- Suppose $\neg p$ is true.
- This means that at most three days of the 22 days fall on the same day.
- This implies that at most 21 days could have been chosen.
- This contradicts the hypothesis that we have 22 days under consideration.
- r: 22 days are chosen.

$$\neg p \to (r \land \neg r)$$

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

$\sqrt{2}$ is irrational

p: 12 irrational 7p: 12 national $= \frac{\alpha}{b} \quad \text{with } \alpha, b \text{ are integers having} \\ \frac{\alpha}{b} \quad \frac{$ $\Rightarrow a = 2c$ a even $2^{2} = (2c)^{2} = 4c^{2}$ $h^2 = 2ic^2 \implies b is even$

Reading Assignment

- Examples 11 14
- Subsection "Mistakes in Proofs"

Exhaustive Proof

Prove that $(n + 1)^2 \ge 3^n$ if *n* is a positive integer with $n \le 4$. $(|+|)^2 = 2^2 = 4 \ge 3' = 3 \lor$ $(2+1)^2 = 5^2 = 9 \ge 4 3^2 = 9$ $4^{2^2} = 16 \qquad 3^3 = 27$

$$\Pi = 3 \quad (\Pi + I)^{\frac{2}{3}}$$

Based on the logical equivalence

$$(p_{1} \lor p_{2} \lor \ldots \lor p_{n}) \rightarrow q \equiv (p_{1} \rightarrow q) \land (p_{2} \rightarrow q) \land \ldots \land (p_{n} \rightarrow q)$$

$$\equiv \neg (\rho_{1} \lor \rho_{2} \lor \ldots \lor \rho_{n}) \lor q$$

$$\equiv \neg \rho_{1} \land \neg \rho_{2} \land \ldots \land (\rho_{n} \lor q)$$

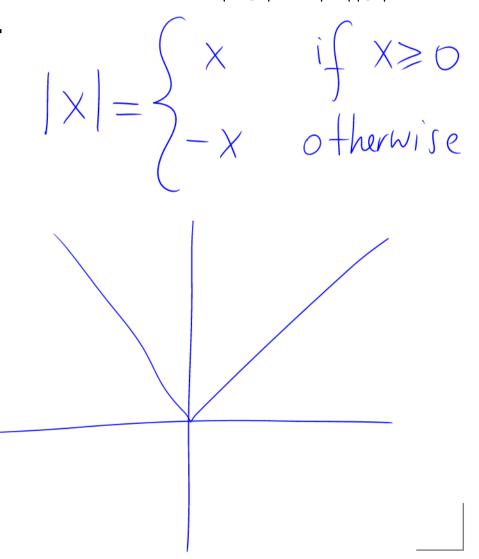
$$\equiv (\neg \rho_{1} \lor q) \land (\neg \rho_{2} \lor q) \land \ldots \land (\neg \rho_{n} \lor q)$$

Example 3: Prove that if n is an integer, then $n^2 \ge n$.

 $\Pi \text{ negative } -1, -2, -3, \dots$ $\Pi = 0$ $\Pi \text{ positive } +1, +2, +3, \dots$

Example 4: Use a proof by cases to show that |xy| = |x||y|, where x and y are real numbers.

(i) $X < 0 \land y < 0$ (ii) $X > 0 \land y < 0$ (iii) $X < 0 \land y > 0$ $(iv) \times > 0 \land y > 0$



Example 5: Formulate a conjecture about the decimal digits that occur as the final digit of the square of an integer and prove your result.

292 $00x^{-+}$ 10.2xy+

Existence Proofs

- Many theorems are assertions that objects of a particular type exist.
- A theorem of this type is a proposition of the form $\exists x P(x)$, where *P* is a predicate.
- A proof of a proposition of the form $\exists x P(x)$ is called **existence proof**.

Constructive vs. Nonconstructive

- Constructive Existence Proof:
 - Sometimes an existence proof can be given by finding a concrete element a such that P(a) is T.
- Nonconstructive Existence Proof:
 - We do not find an element *a* such that P(a) is T, but rather prove that $\exists x P(x)$ is true in some other way.
 - One common method of give a nonconstructive proof is to use proof by contradiction and show the negation of the existential quantifier implies a contradiction.

A Constructive Existence Proof

Show that there is a positive integer that can be written as the sum of cubes of positive integers in two different ways.

A Constructive Existence Proof

- Show that there is a positive integer that can be written as the sum of cubes of positive integers in two different ways.
- Solution: After considerable computation (such as computer search) we find that

$$1729 = 10^3 + 9^3 = 12^3 + 1^3$$
.

Because we have displayed a positive integer that can be written as the sum of cubes in two different ways, we are done.

Nonconstructive Existence Proof

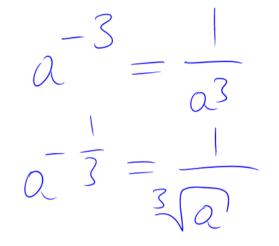
Show that there exist irrational numbers x and y such that x^y is rational.

$$a^{3} = a \cdot a \cdot a$$

$$a^{\frac{1}{3}} = 3a$$

$$m = 7am$$

$$a^{\frac{m}{7}} = 3am$$



Nonconstructive Existence Proof

- Show that there exist irrational numbers x and y such that x^y is rational.
- Recall that $\sqrt{2}$ is irrational. Consider the number $\sqrt{2}^{\sqrt{2}}$.

• If $\sqrt{2}^{\sqrt{2}}$ is rational, we have two irrational numbers x and y with x^y rational, namely, $x = \sqrt{2}$ and $y = \sqrt{2}$.

• On the other hand if $\sqrt{2}^{\sqrt{2}}$ is irrational, then we can let $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$ so that

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2}\cdot\sqrt{2})} = \sqrt{2}^{2} = 2.$$

\bigcirc \bigcirc \bigcirc) + \bigcirc \bigcirc $\sqrt{}$ \bigcirc \bigcirc

Uniqueness Proof

- Some theorems assert the existence of a unique element with a particular property.
- The two parts of uniqueness proof are:
 - Existence: We show that there is an element x with the desired property.
 - Uniqueness: We show that if $y \neq x$, then y does not have the desired property.
- This is the same as showing that

$$\exists x (P(x) \land \forall y (y \neq x \to \neg P(y)))$$

Uniqueness Proof

Example 13: Show that if *a* and *b* are real numbers and $a \neq 0$, then there exists a unique real number *r* such that ar + b = 0.

Reading Assignment + Lab

- Read pages 93 end of Chapter 1 on your own.
- The teaching assistants will go over material relevant to proofs during the lab sections.
- Proof strategies etc. are relevant for homework 2 (to be posted soon).

Intro to Discrete StructuresLecture 8 - p. 27/35

Intro to Discrete StructuresLecture 8 - p. 28/35

Intro to Discrete StructuresLecture 8 – p. 29/35

Intro to Discrete StructuresLecture 8 – p. 30/35

Intro to Discrete StructuresLecture 8 – p. 31/35

Intro to Discrete StructuresLecture 8 - p. 32/35

Intro to Discrete StructuresLecture 8 – p. 34/35

Intro to Discrete StructuresLecture 8 – p. 35/35