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Proof Strategy

We have seen two important methods for proving
theorems of the form ∀x(P (x) → Q(x)) .

These two methods are

the direct proof and

the indirect proof

methods.

It takes some practice (solving homework problems) to
learn to recognize quickly the correct approach.

Try first the direct approach. If it does not work then try
the indirect approach.
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Direct or Indirect Proof?

Definition: The real number r is rational if there exist
integers p and q with q 6= 0 such that r = p/q.

Example 7: Prove that the sum of two rational numbers is
rational.
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Direct or Indirect Proof?

Example 8: Prove that if n is an integer and n2 is odd, then
n is odd.
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Proof by Contradiction I

Suppose we want to prove that p is true.

Furthermore, suppose that we can find a contradiction q
such that

¬p → q

is true.

Because q is false, but ¬p → is true, we can conclude
that ¬p is false, which means that p is true.
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Proof by Contradiction II

The statement
(r ∧ ¬r)

is a contradiction whenever r is a proposition.

Therefore, we can prove that p is true if we can show
that

¬p → (r ∧ ¬r)

is true for some proposition r.
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Proof by Contradiction III

Example 9: Show that at least four of any 22 days must fall
on the same day of the week.
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Proof by Contradiction IV
p : At least four of 22 days chosen fall on the same day
of the week.

Suppose ¬p is true.

This means that at most three days of the 22 days fall
on the same day.

This implies that at most 21 days could have been
chosen.

This contradicts the hypothesis that we have 22 days
under consideration.

r : 22 days are chosen.

¬p → (r ∧ ¬r)
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√
2 is irrational
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√
2 is irrational
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Reading Assignment

Examples 11 – 14

Subsection “Mistakes in Proofs”
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Exhaustive Proof

Prove that (n + 1)2 ≥ 3n if n is a positive integer with n ≤ 4.
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Proof by Cases

Based on the logical equivalence

(p1 ∨ p2 ∨ . . . ∨ pn) → q ≡ (p1 → q) ∧ (p2 → q) ∧ . . . ∧ (pn → q)
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Proof by Cases

Example 3: Prove that if n is an integer, then n2 ≥ n.
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Proof by Cases

Example 4: Use a proof by cases to show that |xy| = |x||y|,
where x and y are real numbers.
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Proof by Cases

Example 5: Formulate a conjecture about the decimal digits
that occur as the final digit of the square of an integer and
prove your result.
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Existence Proofs

Many theorems are assertions that objects of a
particular type exist.

A theorem of this type is a proposition of the form
∃xP (x), where P is a predicate.

A proof of a proposition of the form ∃xP (x) is called
existence proof.
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Constructive vs. Nonconstructive

Constructive Existence Proof:

Sometimes an existence proof can be given by
finding a concrete element a such that P (a) is T.

Nonconstructive Existence Proof:

We do not find an element a such that P (a) is T, but
rather prove that ∃xP (x) is true in some other way.

One common method of give a nonconstructive
proof is to use proof by contradiction and show the
negation of the existential quantifier implies a
contradiction.
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A Constructive Existence Proof

Show that there is a positive integer that can be written
as the sum of cubes of positive integers in two different
ways.
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A Constructive Existence Proof

Show that there is a positive integer that can be written
as the sum of cubes of positive integers in two different
ways.

Solution: After considerable computation (such as
computer search) we find that

1729 = 103 + 93 = 123 + 13 .

Because we have displayed a positive integer that can
be written as the sum of cubes in two different ways, we
are done.
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Nonconstructive Existence Proof

Show that there exist irrational numbers x and y such
that xy is rational.
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Nonconstructive Existence Proof

Show that there exist irrational numbers x and y such
that xy is rational.

Recall that
√

2 is irrational. Consider the number
√

2

√

2
.

If
√

2

√

2
is rational, we have two irrational numbers x

and y with xy rational, namely, x =
√

2 and y =
√

2.

On the other hand if
√

2

√

2
is irrational, then we can
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Chomp
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Uniqueness Proof

Some theorems assert the existence of a unique
element with a particular property.

The two parts of uniqueness proof are:

Existence: We show that there is an element x with
the desired property.

Uniqueness: We show that if y 6= x, then y does not
have the desired property.

This is the same as showing that

∃x(P (x) ∧ ∀y(y 6= x → ¬P (y)))

is true.
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Uniqueness Proof

Example 13: Show that if a and b are real numbers and
a 6= 0, then there exists a unique real number r such that
ar + b = 0.
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Reading Assignment + Lab

Read pages 93 – end of Chapter 1 on your own.

The teaching assistants will go over material relevant to
proofs during the lab sections.

Proof strategies etc. are relevant for homework 2 (to be
posted soon).
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