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Intro to Discrete StructuresLecture 6 – p. 3/29



Formal Notation & Meaning

Let p1, p2, . . . , pn and c be (compound) propositions. The
notation

p1

p2

...
pn

∴ c

means
(p1 ∧ p2 ∧ · · · ∧ pn) → c ≡ T.

p1, p2, . . . , pn are called the premises and c is called the
conclusion.
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I. Rules of Inference

Modus ponens

p

p → q

∴ q

Modus tollens
¬q

p → q

∴ ¬p
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Modus Ponens – Modus Tollens
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II. Rules of Inference

Hypothetical syllogism

p → q

q → r

∴ p → r

Disjuctive syllogism

p ∨ q

¬p

∴ q
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Modus Ponens – Disjunctive syllogism
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III. Rules of Inference

Addition
p

∴ p ∨ q

Simplification

p ∧ q

∴ p
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IV. Rules of Inference

Conjunction

p

q

∴ p ∧ q

Resolution
p ∨ q

¬p ∨ r

∴ q ∨ r
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Resolution

The inference rule “resolution”

p ∨ q

¬p ∨ r

∴ q ∨ r

is based on the tautology

((p ∨ q) ∧ (¬p ∨ r)) → (q ∨ r) .

We recover disjunctive syllogism by setting r = F

((p ∨ q) ∧ (¬p)) → q .

Intro to Discrete StructuresLecture 6 – p. 11/29



Hypothetical Syllogism – Resolution
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Hypothetical Syllogism – Resolution
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Rules of Inference for Quantified Statements

Universal instantiation

∀xP (x)

∴ P (c)

Universal generalization

P (c) for an arbitrary c

∴ ∀xP (x)
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Rules of Inference for Quantified Statements

Existential instantiation

∃xP (x)

∴ P (c) for some element c

Existential generalization

P (c) for an some element c

∴ ∃xP (x)
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Universal Modus Ponens

Universal Modus Ponens

∀x(P (x) → Q(x))

P (a) , where a is a particular element in the domain
∴ Q(a)
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UMP in Math

Assume that the statement

“For all positive integers n, if n is greater than 4, then n2

is less than 2n”

is true. Use UMP to show that 1002 < 2100.
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Universal Modus Tollens

Universal Modus Tollens

∀x(P (x) → Q(x))

¬Q(a) , where a is a particular element in the domain
∴ ¬P (a)
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Introduction to Proofs

Some Terminology

Axiom (or Postulate)

Theorem

Proposition

Lemma (Lemmas or Lemmata)

Corollary

Proof

Conjecture
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Proofs Methods

Direct Proof

Proof by Contraposition (or Indirect Proof)

Proof by Contradition

Proof by Induction
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Direct Proof

Definition 1: The integer n is even if there exists an integer
k such that n = 2k, and n is odd if there exists an integer k
such that n = 2k + 1.

Example 1: Give a direct proof of the theorem “If n is odd,
then n2 is odd.”
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Direct Proof

Definition: An integer a is a perfect square if there is an
integer b such that a = b2.

Example 2: Give a direct proof that if m and n are both
perfect squares, then nm is also a perfect square.

Intro to Discrete StructuresLecture 6 – p. 22/29



Indirect Proof

Example 3: Prove that if n is an integer and 3n + 2 is odd,
then n is odd.

The direct approach does not work!
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Indirect Proof

Example 3: Prove that if n is an integer and 3n + 2 is odd,
then n is odd.

Use contraposition!

∀n ∈ N
(

odd(3n + 2) → odd(n)
)
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Indirect Proof

Example 4: Prove that if n = ab, where a and b are positive
integers, then a ≤

√
n and b ≤

√
n.
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Proof Strategy

We have seen two important methods for proving
theorems of the form ∀x(P (x) → Q(x)) .

These two methods are

the direct proof and

the indirect proof

methods.

It takes some practice (solving homework problems) to
learn to recognize quickly the correct approach.

Try first the direct approach. If it does not work then try
the indirect approach.
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Direct or Indirect Proof?

Definition: The real number r is rational if there exist
integers p and q with q 6= 0 such that r = p/q.

Example 7: Prove that the sum of two rational numbers is
rational.
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Direct or Indirect Proof?

Example 8: Prove that if n is an integer and n2 is odd, then
n is odd.
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Proof by Contradition

We can prove that p is true if we can show that
¬p → (r ∨ ¬r) is true for some proposition r.
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