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Office Hours

Tuesday 2:45pm – 4:00pm

Thursday 1:00pm – 2:15pm
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Nested Quantifiers

Two quantifiers are nested if one is within the scope of
the other, such as

∀x∃y(x + y = 0) .

Everything within the scope of a quantifier can be
thought of as a propositional function. Define the
propositional functions

Q(x) : ∃yP (x, y)

P (x, y) : x + y = 0

Then, we have

∀x∃y(x + y = 0) ≡ ∀x∃yP (x, y) ≡ ∀xQ(x) .
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Thinking of Quantification as Loops

In working with quantification of more than one variable,
it is sometimes helpful to think in terms of nested loops.

Of course, if there are infinitely many elements in the
domain of some variable, we cannot actually loop
through all values. Nevertheless, this way of thinking is
helpful in understanding nested quantifiers.

For example, ∀x∀yP (x, y) corresponds to

for x do
for y do
if ¬P (x, y) return F

end for
end for
return T
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Thinking of Quantification as Loops

For example, ∀x∃yP (x, y) corresponds to

for x do
temp:=F
for y do
if P (x, y) then
temp:=T;
break

end for
if ¬temp return F

end for
return T
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Order of Quantifiers

∀x∀yP (x, y) ≡ ∀y∀xP (x, y)

True if P (x, y) is T for every pair x, y.

False if there is a pair x, y for which P (x, y) is F.

∃x∃yP (x, y) ≡ ∃y∃xP (x, y)

True if there is a pair x, y for which P (x, y) is T.

False if P (x, y) is F for every pair x, y.
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Order of Quantifiers

∀x∃yP (x, y)

True if for every x there is a y for which P (x, y) is T.

False if there is an x such that P (x, y) is F for every y.

∃x∀yP (x, y)

True if there is an x for which P (x, y) is T for every y.

False if for every x there is a y for which P (x, y) is F.
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Reading Assignment

Translating Mathematical Statements into Statements
Involving Nested Quantifiers

Translating from Nested Quantifiers to English

Translating English Sentences into Logical Expressions
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Negating Nested Quantifiers

Example 14: Express the negation of ∀x∃y(xy = 1) so that
no negation precedes a quantifier.

¬∀x∃y(xy = 1)

De Morgan ≡ ∃x¬∃y(xy = 1)

De Morgan ≡ ∃x∀y¬(xy = 1)

≡ ∃x∀y(xy 6= 1)
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Truth Value of Quantified Expressions

Determine the truth value of ∀x∃y(xy = 1). Assume that
the domain is equal to R.
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Truth Value of Quantified Expressions

Determine the truth value of ∀x∃y(xy = 1). Assume that
the domain is equal to R.

∀x∃y(xy = 1) ≡ F because for x = 0 there is no y such
that 0 · y = 1.

This statement becomes T if we change the domain to
be equal to R

∗ := R \ {0} (all real numbers except for 0).

In words, this statement means that every nonzero real
x number has a multiplicative inverse y = 1/x.
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Rules of Inference

Proof in mathematics are valid arguments that establish
the truth of mathematical statements.

By argument, we mean a sequence of statements that
end with a conclusion.

By valid, we mean that the conclusion, or final
statement of the argument, must follow logically from
the truth of the preceeding statements, or premises, of
the argument.

That is, an argument is valid if and only if it is
impossible for all the premises to be true and the
conclusion to be false.
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Example

“If you have current password, then you can log onto
the network.”

“You have a current password.”

Therefore,

“You can log onto the network.”
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Formal notation

Formally, we write

p → q

p

∴ q
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Formal Notation & Meaning

Let p1, p2, . . . , pn and c be (compound) propositions. The
notation

p1

p2

...
pn

∴ c

means
(p1 ∧ p2 ∧ · · · ∧ pn) → c ≡ T.

p1, p2, . . . , pn are called the premises and c is called the
conclusion.
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I. Rules of Inference

Modus ponens

p

p → q

∴ q

Modus tollens
¬q

p → q

∴ ¬p
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II. Rules of Inference

Hypothetical syllogism

p → q

q → r

∴ p → r

Disjuctive syllogism

p ∨ q

¬p

∴ q
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III. Rules of Inference

Addition
p

∴ p ∨ q

Simplification

p ∧ q

∴ p
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IV. Rules of Inference

Conjunction

p

q

∴ p ∧ q

Resolution
p ∨ q

¬p ∨ r

∴ q ∨ r
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Resolution

The inference rule “resolution”

p ∨ q

¬p ∨ r

∴ q ∨ r

is based on the tautology

((p ∨ q) ∧ (¬p ∨ r)) → (q ∨ r) .

We recover disjunctive syllogism by setting r = F

((p ∨ q) ∧ (¬p)) → q .
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Rules of Inference for Quantified Statements

Universal instantiation

∀xP (x)

∴ P (c)

Universal generalization

P (c) for an arbitrary c

∴ ∀xP (x)

Intro to Discrete StructuresLecture 5 – p. 21/25



Rules of Inference for Quantified Statements

Existential instantiation

∃xP (x)

∴ P (c) for some element c

Existential generalization

P (c) for an some element c

∴ ∃xP (x)
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Universal Modus Ponens
Universal Modus Ponens

∀x(P (x) → Q(x))

P (a) , where a is a particular element in the domain
∴ Q(a)

Assume that (*) “For all positive integers n, if n is
greater than 4, then n2 is less than 2n” is true. Use UMP
to show that 1002 < 2100.

Let P (n) : n > 4 and Q(n) : n2 < 2n.

The statement (*) corresponds to ∀n(P (n) → Q(n)).

UMT implies that Q(100) is T.

P (100) is T.
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Universal Modus Tollens

Universal Modus Tollens

∀x(P (x) → Q(x))

¬Q(a) , where a is a particular element in the domain
∴ ¬P (a)
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Introduction to Proofs

Some Terminology

Axioms (or postulates)

Theorem

Proposition

Lemma (Lemmas or Lemmata)

Corollary

Proof

Conjecture
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