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Precedence of Quantifiers

The quantifiers ∀ and ∃ have a higher precedence then
all logical operators from propositional calculus.

For example,
∀x P (x) ∨ Q(x)

means
(

∀x P (x)
)

∨ Q(x)

rather than
∀x

(

P (x) ∨ Q(x)
)

.
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Binding Variables

When a quantifier is used on the variable x, we say that
this occurence of the variable is bound.

An occurence of a variable that is not bound by a
quantifier or set equal to a particular value is said to be
free.

All variables that occur in a predicate must be bound or
set equal to a particular value to turn it into a
proposition.

This can be done by a combination of ∀, ∃, and value
assignments.

The part of a logical expression to which a quantifier is
applied is called the scope of this quantifier.
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Binding Variables – Examples

∃x(x + y = 1)

The variable x is bound by the existential quantifier.

The variable y is free because it is not bound by a
quantifier and no value is assigned to this variable.

Intro to Discrete StructuresLecture 4 – p. 4/16



Binding Variables – Examples
∃x

(

P (x) ∧ Q(x)
)

∨ ∀xR(x)

All variables are bound.

The scope of the first quantifier, ∃x, is the expression
P (x) ∧ Q(x).

The scope of the second quantifier, ∀x, is the
expression R(x).

We could have written the above expression using
two different variables x and y as

∃x
(

P (x) ∧ Q(x)
)

∨ ∀yR(y)

because the scopes do not overlap.
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Logical Equivalence

Definition 3: Expressions involving predicates and
quantifiers are called logically equivalent if and only if
they have the same truth value no matter

which predicates are substituted into these
statements and

which domain of discourse is used for the variables
in these variables in these predicates.

We use the notation S ≡ T that the two expressions S

and T involving predicates and quantifiers are logically
equivalent.
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Logical Equivalence - Example

Prove

∀x(P (x) ∧ Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x) .

To this end, we show:

if ∀x(P (x) ∧ Q(x)) is T, then ∀xP (x) ∧ ∀xQ(x) is T

if ∀xP (x) ∧ ∀xQ(x) is T, then ∀x(P (x) ∧ Q(x)) is T
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Logical Equivalence – Example

So, suppose that ∀x(P (x) ∧ Q(x)) is T.

This means that if the element a is in the domain, then
P (a) ∧ Q(a) is T .

Hence, P (a) is T and Q(a) is T.

Because P (a) and Q(a) is T for every element a in the
domain, we can conclude that ∀xP (x) and ∀xQ(x) are
both T.

This means that ∀x(P (x) ∧ Q(x)) is T.
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Logical Equivalence – Example

Next, suppose that ∀xP (x) ∧ ∀xQ(x) is T.

This means that ∀xP (x) is T and ∀xQ(x) is T.

Hence, if a and b are two arbitrary elements in the
domain, then P (a) and Q(b) are T.

Hence, if a is an arbitrary element in the domain P (a)
and Q(a) are T (we may choose b to be equal to a).

It follows that ∀x(P (x) ∧ Q(x)) is T.
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Logical Equivalences and Nonequivalences

∀x(P (x) ∧ Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x)

∃x(P (x) ∨ Q(x)) ≡ ∃xP (x) ∨ ∃xQ(x)

∀x(P (x) ∨ Q(x)) 6≡ ∀xP (x) ∨ ∀xQ(x)

∃x(P (x) ∧ Q(x)) 6≡ ∃xP (x) ∧ ∃xQ(x)
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Negating Quantified Expressions

We often want to consider the negation of a quantified
expression.

For instance, consider the statement

“Every student enrolled in COT3100 will get an F .”

Its negation is

“There is at least one student enrolled in COT3100 who
will get a grade better than F for this course.”
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Negation of Existential Quantifier

Negation of existential quantifier

¬∃xP (x) ≡ ∀x¬P (x)

Negation is T if for every x, P (x) is F.

Negation is F if there exists an x for which P (x) is T.
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Negation of Universal Quantifier

Negation of universal quantifier

¬∀xP (x) ≡ ∃x¬P (x)

Negation is T if there is an x for which P (x) is F.

Negation is F if P (x) is T for every x.
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De Morgan’s Laws for Quantifiers

De Morgan’s Laws are

¬∃xP (x) ≡ ∀x¬P (x)

¬∀xP (x) ≡ ∃x¬P (x)

Remark: When the domain of a predicate P (x) consists
of m elements, where m is a positive integer, then the
above rules of negating quantified predicates are
exactly the same as De Morgan’s Laws in Propositional
Logic.
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Logical Equivalence

Example 22: Show that

¬∀x(P (x) → Q(x)) ≡ ∃x(P (x) ∧ ¬Q(x)) .

¬∀x(P (x) → Q(x))

De Morgan ≡ ∃x(¬(P (x) → Q(x)))

impl-or ≡ ∃x(¬(¬P (x) ∨ Q(x)))

De Morgan ≡ ∃x(¬¬P (x) ∧ ¬Q(x))

double negation ≡ ∃x(P (x) ∧ ¬Q(x)) �
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Reading Assignment

Translating from English into Logical Expressions

Using Quantifiers in Systems Specifications

Examples from Lewis Carroll

Logic Programming
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