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Precedence of Quantifiers

- N

# The quantifiers V and 3 have a higher precedence then
all logical operators from propositional calculus.

#® [For example,
Vr P(x) V Q(x)
means
(Vx P(:z:)) V Q(x)
rather than

Va (P(CC) \V Q(x)) .
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Binding Variables
-

When a guantifier is used on the variable z, we say that
this occurence of the variable is bound.

An occurence of a variable that is not bound by a
guantifier or set equal to a particular value is said to be
free.

All variables that occur in a predicate must be bound or
set equal to a particular value to turn it into a
proposition.

This can be done by a combination of Vv, 3, and value
assignments.

The part of a logical expression to which a quantifier is
applied is called the scope of this quantifier. J
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Binding Variables — Examples

. N

s The variable z is bound by the existential quantifier.

s The variable y is free because it is not bound by a
guantifier and no value is assigned to this variable.

o |
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Binding Variables — Examples
. J2(P(z) A Q(x)) V VaR(z) o
s All variables are bound.

» The scope of the first quantifier, 3z, Is the expression

P(z) A Q(x).

s The scope of the second quantifier, Vz, Is the
expression R(x).

We could have written the above expression using
two different variables x and y as

Jx (P(x) A Q(x)) vV VyR(y)
L because the scopes do not overlap. J
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Logical Equivalence

f.o Definition 3: Expressions involving predicates and T

guantifiers are called logically equivalent if and only if
they have the same truth value no matter

s Which predicates are substituted into these
statements and

o Which domain of discourse is used for the variables
In these variables in these predicates.

# We use the notation S = T that the two expressions S

and 7' involving predicates and quantifiers are logically
equivalent.

o |
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Logical Equivalence - Example

- N

® Prove

Vae(P(x) AN Q(x)) = Ve P(x) ANVxQ(x).

# To this end, we show:
o IFVx(P(z)ANQ(x)) IS T, then Ve P(x) AVxQ(x) IS T

s IfVxP(x) ANVzQ(z) IS T, then Vx(P(x) ANQ(x)) IS T



Logical Equivalence — Example

-

So, suppose that Va(P(x) A Q(x)) IS T.

This means that if the element «a iIs In the domain, then
Pla) NQ(a) IS T,

Hence, P(a) IS T and Q(a) IS T.

Because P(a) and Q(a) Is T for every element « in the
domain, we can conclude that VzP(z) and VzQ(x) are
both T.

This means that Vz(P(z) A Q(x)) IS T.
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Logical Equivalence — Example

-

Next, suppose that VxP(x) A VxQ(x) IS T.
This means that VzP(z) is T and VxQ(x) Is T.

Hence, If ¢« and b are two arbitrary elements in the
domain, then P(a) and Q(b) are T.

Hence, If a IS an arbitrary element in the domain P(a)
and Q(a) are T (we may choose b to be equal to a).

It follows that Vz(P(z) A Q(x)) IS T.

|
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Logical Equivalences and Nonequivalences

- N

Vr(P(z) A Q(x)) Ve P(x) A VxQ(x)

Jz(P(r) vV Q(z))

JrP(x) V dxQ(x)

Ve(P(x)VQ(x)) # VzP(x)VVrQ(x)

Jr(P(x) ANQ(x)) # FJxP(x) A JxQ(x)



Negating Quantified Expressions

We often want to consider the negation of a quantified T
expression.

For instance, consider the statement

“Every student enrolled in COT3100 will get an F'

Its negation Is

“There iIs at least one student enrolled in COT3100 who
will get a grade better than F for this course’”

|
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Negation of Existential Quantifier

- N

# Negation of existential quantifier
—dzP(z) = Vo P(z)

s Negationis T if for every z, P(z) IS k.

s Negation is F if there exists an x for which P(x) IS T.

o |
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Negation of Universal Quantifier

- N

# Negation of universal quantifier
Vo P(x) = dJz—P(x)

s Negationis T if there is an x for which P(z) iIs F

s Negationis F if P(x)Is T for every x.

o |
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De Morgan’s Laws for Quantifiers

- N

#® De Morgan’s Laws are

—dxP(x) Va—P(x)

-V P(x) Jr-P(x)

#® Remark: When the domain of a predicate P(x) consists
of m elements, where m Is a positive integer, then the
above rules of negating quantified predicates are
exactly the same as De Morgan’s Laws in Propositional

Logic.

o |
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Logical Equivalence

fExampIe 22: Show that

Va(Pr) — Qz)) = Fx(P(x) A =Q(z)).

De Morgan
iImpl-or
De Morgan

L double negation

VY (P(z) — Qz))

Jz(=(P(r) — Q()))
Jz(=(=P(z) v Q(2)))
Jz(==P(z) A =Q())

dz(P(x) AN -Q(z)) O



Reading Assignment

- N

# Translating from English into Logical Expressions
# Using Quantifiers in Systems Specifications
# Examples from Lewis Carroll

# Logic Programming

o |
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