
Intro to Discrete Structures
Lecture 3

Pawel M. Wocjan

School of Electrical Engineering and Computer Science

University of Central Florida

wocjan@eecs.ucf.edu

Intro to Discrete StructuresLecture 3 – p. 1/41

Laws in Propositional Logic & Arithmetic

Identity laws

p ∧ T ≡ p a · 1 = a

p ∨ F ≡ p a + 0 = a

Commutative laws

p ∧ q ≡ q ∧ p a · b = b · a

p ∨ q ≡ q ∨ p a + b = b + a

Intro to Discrete StructuresLecture 3 – p. 2/41

Laws in Propositional Logic & Arithmetic

Associative laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r) a · (b · c) = a · (b · c)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) a + (b + c) = a + (b + c)

Distributive laws

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) a · (b + c) = (a · b) + (a · c)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) a + (b · c)

Intro to Discrete StructuresLecture 3 – p. 3/41

Further Laws in Propositional Logic

Domination laws

p ∨ T ≡ T

p ∧ F ≡ F

Idempotent laws

p ∨ p ≡ p

p ∧ p ≡ p

Double negation
¬¬p ≡ p

Intro to Discrete StructuresLecture 3 – p. 4/41

Further Laws in Propositional Logic

De Morgan laws

¬(p ∧ q) ≡ ¬p ∨ ¬q

¬(p ∨ q) ≡ ¬p ∧ ¬q

Absorption laws

p ∨ (p ∧ q) ≡ p

p ∧ (p ∨ q) ≡ p

Negation laws

p ∨ ¬p ≡ T

p ∧ ¬p ≡ F

Intro to Discrete StructuresLecture 3 – p. 5/41

300

Which of the following two compound propositions

(G → S) ∨ (G → J)

G → (S ∨ J)

is the correct translation of “Greeks carry Swords or
Javelins”

Eλληνǫs κρατανǫ σπαθια η ακoντια.

into propositional logic?

Intro to Discrete StructuresLecture 3 – p. 6/41

300

It turns out that both compound propositions are equivalent.

How do we show that? One approach is via building the
truth table and comparing the corresponding columns.

Let’s do something fancier.

First, convince yourself that the following laws are correct:

p → q ≡ ¬p ∨ q implication in terms of or (impl-or)
p ∨ q ≡ q ∨ p commutative law (comm)
p ∨ p ≡ p idempotent law (idem)

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r associative law (ass)

Intro to Discrete StructuresLecture 3 – p. 7/41

300

Second, apply these laws in a ‘smart’ way:

(G → S) ∨ (G → J)

apply the law

impl-or ≡ (¬G ∨ S) ∨ (¬G ∨ J)

ass ≡ ¬G ∨ S ∨ ¬G ∨ J

comm ≡ ¬G ∨ ¬G ∨ S ∨ J

idem ≡ ¬G ∨ S ∨ J

ass ≡ ¬G ∨ (S ∨ J)

impl-or ≡ G → (S ∨ J) �

Intro to Discrete StructuresLecture 3 – p. 8/41

Contraposition

The logical equivalence

p → q ≡ ¬q → ¬p

is called contraposition. It is at the heart of the proof
technique “Proof by contradition” (more on proofs later).

Intro to Discrete StructuresLecture 3 – p. 9/41

Logic and Bit Operations

Decimal numbers

134 = 1 · 102 + 3 · 101 + 4 · 100

dn−1 . . . d1d0 = dn−1 · 10n−1 + . . . + d1 · 101 + d0 · 100

=
n−1
∑

j=0

dj · 10j , dj ∈ {0, . . . , 9}

Intro to Discrete StructuresLecture 3 – p. 10/41

Logic and Bit Operations

Binary numbers

10000110 = 1 · 27 + 1 · 22 + 1 · 1 · 21

bm−1 . . . b1b0 = bn−1 · 2m−1 + . . . + b1 · 21 + b0 · 20

=
m−1
∑

k=0

bk · 2k , bk ∈ {0, 1}

Intro to Discrete StructuresLecture 3 – p. 11/41

Bit Operators OR, AND, and XOR

Identify T with 1 and F with 0

x y x ∨ y x ∧ y x ⊕ y

0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

Intro to Discrete StructuresLecture 3 – p. 12/41

Adding Binary Numbers

How can we add two m-bit numbers x = xm−1 . . . x1x0

and y = xm−1 . . . x1x0?

Express the sum z = zmzm−1 . . . z1z0 in terms of the bits
of x and y.

Intro to Discrete StructuresLecture 3 – p. 13/41

Half adder

Let us start with the LSB (least significant bit):

x0 0 0 1 1
y0 0 1 0 1

c0z0 00 01 01 10

Express the carry-bit c0 and z0 in terms of x0 and y0.

Intro to Discrete StructuresLecture 3 – p. 14/41

Half adder

Let us start with the LSB (least significant bit):

x0 0 0 1 1
y0 0 1 0 1

c0z0 00 01 01 10

Express the carry-bit c1 and z0 in terms of x0 and y0:

c1 = x0 ∧ y0

z0 = x0 ⊕ y0

Intro to Discrete StructuresLecture 3 – p. 15/41

Full adder

Consider the kth bit where k > 1 (that is, not the LSB)

ck 0 0 0 0 1 1 1 1
xk 0 0 1 1 0 0 1 1
yk 0 1 0 1 0 1 0 1

ck+1zk 00 01 01 10 01 10 10 11

Express ck+1 and zk in terms of ck, xk, and yk:

Intro to Discrete StructuresLecture 3 – p. 16/41

Full adder

Consider the kth bit where k > 1 (that is, not the LSB)

ck 0 0 0 0 1 1 1 1
xk 0 0 1 1 0 0 1 1
yk 0 1 0 1 0 1 0 1

ck+1zk 00 01 01 10 01 10 10 11

Express ck+1 and zk in terms of ck, xk, and yk:

ck+1 = (ck ∧ xk) ∨ (ck ∧ yk) ∨ (xk ∧ yk)

zk = ck ⊕ xk ⊕ yk

Intro to Discrete StructuresLecture 3 – p. 17/41

I. Indiana Jones / Indiana Janet

On your quest for the Grail of Eternal Truth, you enter
the Chamber of Propositional Logic in the Temple of
Logic.

There are three statues of the Egyptian deities Thoth
(Baboon), Ra (Hawk), and Anubis (Jackal) on the altar
in front of you.

Based upon the inscriptions on the statues, you have to
determine the statue under which the key to the
Chamber of Predicate Logic is hidden.

Intro to Discrete StructuresLecture 3 – p. 18/41

II. Indiana Jones / Indiana Janet

Having deciphered the hieroglyphs of the ancient (and
very expensive) text “Intro to Discrete Mathematics” by
the evil high priest Rosen, you know that none or just
one of the inscriptions is true:

Thoth: The key is here.

Ra: The key is not here.

Anubis: The key is not under Thoth’s statue.

If you do not pick up the correct statue within five
minutes, the floor will crumble and you will fall into a pit
with ferocious crocodiles. Hurry up, the water of the
clepsydra is already dripping ...

Intro to Discrete StructuresLecture 3 – p. 19/41

III. Indiana Jones / Indiana Janet

It turns out that the high priest is more evil that you
anticipated. A new challenge awaits you in the chamber
to which you just gained access. This time at least one
of the inscriptions is true and at least one of them is
false:

Thoth: The key is not under Ra’s statue.

Ra: The key is not here.

Anubis: The key is not here.

Solve this challenge whenever you want.

Intro to Discrete StructuresLecture 3 – p. 20/41

1.3. Predicates and Quantifiers

A declarative sentence is a predicate if

it contains one or more variables, and

it is not a proposition, but

it becomes a proposition when the variables in it are
replaced by certain by certain allowable choices.

The allowable choices constitute what is called the
universe or the domain (or universe of discourse or
domain of discourse) for the predicate.

Intro to Discrete StructuresLecture 3 – p. 21/41

Predicates

When we examine the sentence “The number x + 2 is
greater than 1” in light of this definition, we find that it is
a predicate that contains the single variable x.

The universe could be the natural numbers N, the
integers Z, the rational numbers Q, or the real numbers
R.

We choose the universe to be R.

Let us use P (x) as a short hand notation for “The
number x + 2 is strictly greater than 1.”

Determine the truth values of P (−
√

2) and P (−0.5).

Intro to Discrete StructuresLecture 3 – p. 22/41

Predicates

Recall that P (x) denotes the predicate “The number
x + 2 is strictly greater than 1.”

We have −
√

2 + 2 ≤ 1, so the truth value of P (−
√

2) is F.

We have −0.5 + 2 = 1.5 > 1, so the truth value of
P (−0.5) is T.

Intro to Discrete StructuresLecture 3 – p. 23/41

Predicates

Let Q(x, y) denote the predicate “x = y + 3.” Let the
universe N × N, that is, pairs of natural numbers.

Determine the truth values of

Q(1, 2)

Q(3, 0)

Intro to Discrete StructuresLecture 3 – p. 24/41

Predicates

Let Q(x, y) denote the predicate “x = y + 3.” Let the
universe N × N, that is, pairs of natural numbers.

Determine the truth values of

Q(1, 2)

Q(3, 0)

The truth value of

Q(1, 2) is F since 1 6= 2 + 3 = 5

Q(3, 0) is T since 3 = 0 + 3.

Intro to Discrete StructuresLecture 3 – p. 25/41

n-ary Predicates

In general, a predicate involving the n variables
x1, x2, . . . , xn can be denoted by

P (x1, x2, . . . , xn)

P is called a n-place predicate or a n-ary predicate .

P is also refered to as a propositional function .

Intro to Discrete StructuresLecture 3 – p. 26/41

Predicate Calculus

When the variables in a predicate are assigned values,
the resulting statement becomes a proposition with a
certain truth value.

Quantification is another important way to create a
proposition from a predicate.

Quantification expresses the extent to which a predicate
is true over a range of elements. In English, the words
all, some, many, none, and few are used in
quantification.

We focus on universal and existential quantification.
The area of logic that deals with predicates and
quantifiers is called predicate calculus .

Intro to Discrete StructuresLecture 3 – p. 27/41

Universal Quantification

Definition 1:

The universal quantification of P (x) is the statement

“P (x) for all the values of x in the domain.”

The notation ∀x P (x) denotes the universal
quantification of P (x).

Here ∀ is called the universal quantifier .

We read ∀x P (x) as “for all xP (x)” or “for every xP (x).

An element for which P (x) is false is called a
counterexample of ∀xP (x).

Intro to Discrete StructuresLecture 3 – p. 28/41

Existential Quantification

Definition 2:

The existential quantification of P (x) is the statement

“There exists an element x in the domain such that P (x).”

The notation ∃x P (x) denotes the existential
quantification of P (x).

Here ∃ is called the existential quantifier .

Intro to Discrete StructuresLecture 3 – p. 29/41

Universal vs. Existential

When true? When false?

∀xP (x) P (x) is true for every x. There is an x for
which P (x) is false.

∃xP (x) There is an x for P (x) is false for every x.
which P (x) is true.

Intro to Discrete StructuresLecture 3 – p. 30/41

Universal vs. Existential

Let Q(x) : x < 0.

Assume that the domain of Q is the set of integers
Z = {0,±1,±2,±3, . . .}.

Determine the truth values of ∀x Q(x) and ∃x Q(x):

Intro to Discrete StructuresLecture 3 – p. 31/41

Universal vs. Existential

Let Q(x) : x < 0.

Assume that the domain of Q is the set of integers
Z = {0,±1,±2,±3, . . .}.

Determine the truth values of ∀x Q(x) and ∃x Q(x):

∀x Q(x) is F.

A counterexample for ∀x Q(x) is 1 since Q(1) is F
(1 6< 0).

∃x Q(x) is T.

For example, Q(x) is T for x = −2 (−2 < 0).

Intro to Discrete StructuresLecture 3 – p. 32/41

Universal vs. Existential

Let Q(x) : x < 0.

Assume that the domain of Q is the set of natural
numbers N = {0, 1, 2, 3, . . .}.

Determine the truth values of ∀x Q(x) and ∃x Q(x):

Intro to Discrete StructuresLecture 3 – p. 33/41

Universal vs. Existential

Let Q(x) : x < 0.

Assume that the domain of Q is the set of natural
number N = {0, 1, 2, 3, . . .}.

Determine the truth values of ∀x Q(x) and ∃x Q(x):

∀x Q(x) is still F.

A counterexample for ∀x Q(x) is 1 since Q(1) is F
(1 6< 0).

But ∃x Q(x) becomes F when we change the domain
from Z to N!

There does not exist an element x ∈ N such that
x < 0 (since 0 is the smallest number in N).

Intro to Discrete StructuresLecture 3 – p. 34/41

Empty Domains

Generally, an implicit assumption is made that the
domains of discourse for quantifiers are nonempty.

If the domain is empty, then

∀x Q(x) is T for any predicate Q since there are no
elements x in the domain for which P (x) is F.

∃x Q(x) is F for any predicate Q because when the
domain is empty, there can be no element in the
domain for which P (x) is T.

Intro to Discrete StructuresLecture 3 – p. 35/41

Finite Domains

Assume the domain of the predicate P (x) is finite – say,
its elements are v1, . . . , vm.

∀x P (x) is the same as the conjuction

P (v1) ∧ P (v2) ∧ · · · ∧ P (vm)

because this conjuction is true if and only if P (v1),
P (v2), . . . , P (vm) are all true.

What compound proposition does ∃x P (x)
correspond to?

Intro to Discrete StructuresLecture 3 – p. 36/41

Finite Domains

Assume the domain of the predicate P (x) is finite – say,
its elements are v1, . . . , vm.

∀x P (x) is the same as the conjuction

P (v1) ∧ P (v2) ∧ · · · ∧ P (vm)

because this conjuction is true if and only if P (v1),
P (v2), . . . , P (vm) are all true.

∃x P (x) is the same as the disjuction

P (v1) ∨ P (v2) ∨ · · · ∨ P (vm)

because this disjuction is true if and only if at least one
of P (v1), P (v2), . . . , P (vm) is true.

Intro to Discrete StructuresLecture 3 – p. 37/41

Precedence of Quantifiers

The quantifiers ∀ and ∃ have a higher precedence then
all logical operators from propositional calculus.

For example,
∀x P (x) ∨ Q(x)

means
(

∀x P (x)
)

∨ Q(x)

rather than
∀x

(

P (x) ∨ Q(x)
)

.

Intro to Discrete StructuresLecture 3 – p. 38/41

Binding Variables

When a quantifier is used on the variable x, we say that
this occurence of the variable is bound .

An occurence of a variable that is not bound by a
quantifier or set equal to a particular value is said to be
free .

All variables that occur in a predicate must be bound or
set equal to a particular value to turn it into a
proposition.

This can be done by a combination of ∀, ∃, and value
assignments.

The part of a logical expression to which a quantifier is
applied is called the scope of this quantifier.

Intro to Discrete StructuresLecture 3 – p. 39/41

Binding Variables – Examples

∃x(x + y = 1)

The variable x is bound by the existential quantifier.

The variable y is free because it is not bound by a
quantifier and no value is assigned to this variable.

Intro to Discrete StructuresLecture 3 – p. 40/41

Binding Variables – Examples
∃x

(

P (x) ∧ Q(x)
)

∨ ∀xR(x)

All variables are bound.

The scope of the first quantifier, ∃x, is the expression
P (x) ∧ Q(x).

The scope of the second quantifier, ∀x, is the
expression R(x).

We could have written the above expression using
two different variables x and y as

∃x
(

P (x) ∧ Q(x)
)

∨ ∀yR(y)

because the scopes do not overlap.

Intro to Discrete StructuresLecture 3 – p. 41/41

	Laws in Propositional Logic & Arithmetic
	Laws in Propositional Logic & Arithmetic
	Further Laws in Propositional Logic
	Further Laws in Propositional Logic
	300
	300
	300
	Contraposition
	Logic and Bit Operations
	Logic and Bit Operations
	Bit Operators OR, AND, and XOR
	Adding Binary Numbers
	Half adder
	Half adder
	Full adder
	Full adder
	I. Indiana Jones / Indiana Janet
	II. Indiana Jones / Indiana Janet
	III. Indiana Jones / Indiana Janet
	1.3. Predicates and Quantifiers
	Predicates
	Predicates
	Predicates
	Predicates
	{em n}-ary Predicates
	Predicate Calculus
	Universal Quantification
	Existential Quantification
	Universal vs. Existential
	Universal vs. Existential
	Universal vs. Existential
	Universal vs. Existential
	Universal vs. Existential
	Empty Domains
	Finite Domains
	Finite Domains
	Precedence of Quantifiers
	Binding Variables
	Binding Variables -- Examples
	Binding Variables -- Examples

