COT 3100 Discrete Mathematics Homework 2 Questions

This homework is due on Friday, February 26th, 2010.

Problem 1.

Use Laws of Logic and Rules of Inference to justify the following arguments.

(a) (5 pts) $\begin{array}{l} \forall x(P(x) \lor Q(x)) \\ \forall x((\neg P(x) \land Q(x)) \to R(x)) \\ \hline \vdots \forall x(\neg R(x) \to P(x)) \end{array}$ (b) (5 pts) $p \lor q$

 $\begin{array}{c} u \wedge r \\ r \to \neg t \\ (s \lor p) \to t \end{array}$

Problem 2.

Prove or disprove each of the following statements.

- (a) (5 pts) If $n \ge 1$ is a perfect square, then n+2 is not a perfect square.
- (b) (5 pts) Consider the following numbers.

 $\begin{array}{l} 65^{1006}-8^{2001}+3^{177}\\ 79^{1210}-9^{2399}+2^{2001}\\ 24^{4491}-5^{8190}+7^{1775} \end{array}$

It is possible to select 2 different numbers from the 3 numbers above such that their product is non-negative.

- (c) (5 pts) If a and b are rational numbers, then a^b is also rational.
- (d) (5 pts) $\sqrt[3]{2}$ is irrational.

Problem 3.

Let A, B and C be sets and let P(X) be the powerset of set X. Prove or disprove the following statements.

- (a) (5 pts) If $A \subseteq (B \cup C)$, then $A \subseteq B$ or $A \subseteq C$.
- (b) (5 pts) $(A C) \cap (C B) = \emptyset$.
- (c) (5 pts) $P(A) P(B) \subseteq P(A B)$.