COT 3100 Discrete Mathematics Homework 2 Key

February 19, 2010

Problem 1.

Use Laws of Logic and Rules of Inference to justify the following arguments.

(a) Section
$$1.5 \# 28, 5 \text{ pts}$$

 $\forall x (P(x) \lor Q(x))$ $\forall x((\neg P(x) \land Q(x)) \to R(x))$ $\therefore \forall x(\neg R(x) \to P(x))$ Step Reason $\forall x(P(x) \lor Q(x))$ Premise 1. 2. $P(a) \lor Q(a)$ Universal instantiation from (1)3. $\forall x((\neg P(x) \land Q(x)) \to R(x))$ Premise 4. $\forall x(\neg(\neg P(x) \land Q(x))) \lor R(x))$ Rule of Implication from (3)5. $\forall x((P(x) \lor \neg Q(x)) \lor R(x))$ DeMorgan's Law from (4) $P(a) \lor \neg Q(a) \lor R(a)$ Universal instantiation from (5)6. 7. $P(a) \lor P(a) \lor R(a)$ Resolution from (2) and (6)8. $P(a) \vee R(a)$ Idempotent Law from (7)9. $\neg R(a) \rightarrow P(a)$ Rule of Implication from (8)10. $\forall x(\neg R(x) \rightarrow P(x))$ Universal generalization from (9)

(b)
$$5 \text{ pts}$$

 $p \lor q$ $u \land r$ $r \to \neg t$ $(s \lor p) \to t$

$$\therefore q$$

	\mathbf{Step}	Reason
1.	$u \wedge r$	Premise
2.	r	Simplification using (1)
3.	$r \rightarrow \neg t$	Premise
4.	$\neg t$	Modus ponens using (2) and (3)
5.	$(s \lor p) \to t$	Premise
6.	$\neg(s \lor p)$	Modus tollens using (4) and (5)
7.	$\neg s \land \neg p$	DeMorgan's Law using (6)
8.	$\neg p$	Simplification using (7)
9.	$p \vee q$	Premise
10.	q	Disjunctive syllogism using (8) and (9)

Grading:

- 1. Full credit if everything follows correctly with reasons.
- 2. -2 points each if reasons are missing, or missing more than half of the steps.
- 3. -3 points each if the solution used verbal arguments instead of algebra (logic and inference).
- 4. Give 0 point each if there exists no procedure but conclusion.

Problem 2.

Prove or disprove each of the following statements.

- (a) (Section 1.6 #8, 5 pts) If $n \ge 1$ is a perfect square, then n+2 is not a perfect square.
 - **Proof:** Since $n \ge 1$ is a perfect square There exists an integer $m \ge 1$ so that $n = m^2$ Therefore the smallest perfect square greater than n is $(m+1)^2$ $(m+1)^2 - (n+2) = m^2 + 2m + 1 - (n+2) = n + 2m + 1 - n - 2 = 2(m-1) + 1$ Since $m \ge 1$, thus 2(m-1) + 1 > 0Therefore $(m+1)^2 > (n+2)$, and n+2 cannot be a perfect square.
- (b) (Section 1.7 #10, 5 pts) Consider the following numbers. $65^{1006} - 8^{2001} + 3^{177}$ $79^{1210} - 9^{2399} + 2^{2001}$ $24^{4491} - 5^{8190} + 7^{1775}$

It is possible to select 2 different numbers from the 3 numbers above such that their product is non-negative.

Proof: Of these three numbers, at least two must have the same sign (both non-negative or both negative), since there are only two signs (negative and non-negative) need to be considered. The product of two with the same sign is non-negative.It is a non-constructive proof, since we have not identified which product is non-negative.

It is a non-constructive proof, since we have not identified which product is non-negative

(c) (Section 1.7 #12, 5 pts) If a and b are rational numbers, then a^b is also rational.

Disproof: Take a = 2 and b = 1/2, Then $a^b = 2^{1/2} = \sqrt{2}$

Because we know that $\sqrt{2}$ is not rational, then we disprove the statement.

(d) (Section 1.7 #32, 5 pts) $\sqrt[3]{2}$ is irrational.

Proof: We can prove it by contradiction, which means that $\sqrt[3]{2}$ is rational. Then we have $\sqrt[3]{2} = a/b$, where a and b are integers without common factors. It follows that $2 = a^3/b^3$, hence, $2b^3 = a^3$. By the definition of an even integer it follows that a^3 is even, therefore *a* must also be even. Furthermore we can let a = 2c for some integer *c*, thus $2b^3 = 8c^3$. After dividing both sides of this equation by 2 gives $b^3 = 4c^3$, which means b^3 is even, again b must be even as well. We have now concluded that *a* and *b* are both even, thus 2 is a common divisor of *a* and *b*. This contradicts the choice of a/b. Therefore the assumption—that $\sqrt[3]{2}$ is rational—is in error, so we have proved that $\sqrt[3]{2}$ is irrational.

Grading:

- 1. -2 each if answer is correct but justification is incorrect.
- 2. -3 each if answer is correct but missing justification.
- 3. Give 0 point if answer is incorrect.

Problem 3.

Let A, B and C be sets and let P(X) be the powerset of set X. Prove or disprove the following statements.

- (a) (5 pts) If $A \subseteq (B \cup C)$, then $A \subseteq B$ or $A \subseteq C$. **Disproof:** Take $A = \{1, 2\}, B = \{1, 3\}$ and $C = \{2, 4\}$. Then $A \subseteq B \cup C = \{1, 2, 3, 4\}$, but A is neither a subset of B, nor a subset of C
- (b) (5 pts) $(A C) \cap (C B) = \emptyset$.

 $\begin{array}{ll} \textbf{Proof:} & \text{We can prove it by contradiction.} \\ & \text{Assume that}(A-C)\cap(C-B)\neq\emptyset \text{ to show that it results to contradiction.} \\ & (A-C)\cap(C-B)\neq\emptyset \text{ means that there exists some } x\in(A-C)\cap(C-B). \\ & \text{By the definition of intersection we can imply, that there exists } x \text{ for which the following proposition is true: } p = (x\in A-C)\wedge(x\in C-B). \\ & \text{Using the definition of set difference we can rewrite } p \text{ as:} \\ & p = (x\in A)\wedge(x\notin C)\wedge(x\in C)\wedge(x\notin B). \\ & \text{But } (x\notin C)\wedge(x\in C) = \text{False, so} \\ & p = (x\in A)\wedge[(x\notin C)\wedge(x\in C)]\wedge(x\notin B) = (x\in A)\wedge \text{ False } \wedge(x\notin B) = \text{ False.} \\ & \text{Thus, the assumption that intersection } (A-C)\cap(C-B)\neq\emptyset \text{ is not empty results} \\ & \text{to contradiction which proves that this assumption is false, i.e. intersection is empty.} \end{array}$

(c) (5 pts) $P(A) - P(B) \subseteq P(A - B)$.

Grading:

- 1. -2 each if answer is correct but justification is incorrect.
- 2. -3 each if answer is correct but missing justification.
- 3. Give 0 point if answer is incorrect.