Deterministic Finite Automata

(a specific finite state machine)

We have already talked about one way to specify a regular language: through a regular expression. Now, I will show you another way, using a more “visual” representation.

In the textbook, they talk about finite state machines in sections 6.2 and 6.3. DFA’s are a specific type of finite state machine. In particular, a DFA does not have output, as a general FSM does. That is pretty much the only difference.

Both in the book and in Dr. Lang’s notes(around 4-10 through 4-16) there is a formal definition of a DFA and FSM respectively. Since we have so little time to deal with these, I won’t get into the formal definition, which usually confuses people. If you are interested in it, look at Dr. Lang’s notes. I think they do a good job of explaining the mechanics of the definition.

I will draw a whole bunch of pictures, and give you a basic idea of how one works.

The basic idea behind a DFA is this: Its goal is to read in a string and determine whether or not the string is in the language that the DFA describes. But, there are some restrictions. It may only have a finite amount of memory. In particular, this machine reads in one letter at a time. But after it has “read” in a letter of the string, it can not “remember” what it read in. Rather, it can only “remember” what state it is in, and there is only a finite amount of these states.

So, the machine has these components:

1) An alphabet that the strings in the language are made up of.

2) A set of states, each of which I will denote with a circle.

3) A start state, which I will denote with an shaded arrow

4) A set of final states, which I will denote with a circle inside  

    of a circle

5) A set of transitions in between each of the states, which is

     essentially a list of rules that govern how you “move” from

     state to state. These will be denoted by a whole bunch of

     directed arrows(or edges) drawn from state to state, each of 

     which is labeled by a letter from the alphabet. You are only

     allowed one arrow coming out of a particular state labeled

     with a particular letter. (Hence you can not have two arrows

     coming out of state 5, labeled with an ‘a’, going to different

     places.)

Here is an example of a DFA :

Now, we must go over how to decide whether a given string is part of the language the DFA describes. Here is how to do this:

1) Put yourself at the start state.

2) While you are not done reading in the string do 


2a) Read in the next letter.

         2b) Find the arrow from the state you are in that is


       labeled with the letter you just read in, leaving

                that state.

          2c) Go to the state this arrow is pointing to.

3) Look at the state you are in. If it is in the set of final states, the string you started with is IN the language. If you are NOT in a state that is in the set of final states, the string you started with is not in the language.

If you analyze the DFA that I have on the previous page, you will find that it accepts the language of all strings that do not have the same letter appear consecutively (more than once).

You will notice that each state essentially keeps track of some sort of information. 

The start state, q0, indicates nothing has been read in. 

The state q1 indicates that the last character read in was an a, and that so far, no consecutive letters have been seen. 

The state q2 indicates that the last character read in was a b, and that so far, no consecutive letters have been seen.

Finally, state q3 indicates that consecutive letters have been seen.

Here is an exercise for you:

Draw a DFA to accept all strings that start and end with the same letter. (( should not be accepted since it does not start with a letter.)

Equivalence of DFAs and Regular Expressions

It turns out that if you can describe a language (ie. a set of strings over an alphabet) with a regular expression, you can also find a DFA to accept that exact language. I do not have the time to prove that here, but just take my word for it.

Just to give you a couple examples, here is the regular expression that describes the SAME language that the first DFA I showed you accepts:

(a ( ()(ba)*(b ( ()

By looking at the regular expression, you can tell that it does not allow an a to be followed by an a, or any b to be followed by a b. Furthermore, it does allow any string that fits this description. (Basically, each string either starts with an a or b, and alternates letters. In our regular expression, the two (s give us the “freedom” to pick the starting and ending letters.)

Can you come up with the regular expression that describes the same language that the DFA you came up with previously accepts?

Another Example: a DFA that accepts all strings divisible by 3.

Consider the language containing all binary strings over the alphabet {0,1} that are divisible by 3. Remember, for example, that

0101012 = 2110. Since this value is divisible by 3, the string 010101 would be in the language described.

Our key observation in creating this DFA is that whenever we read in a “new” character, the value of our binary string can be computed as follows:

new value = 2*(old value) + (new digit read in).

Just to see an example, consider that we have already “read in” 01110. This has a value of 14. Now consider reading in a 1. Our new string is 011101, which has a value of 29 = 2*14 + 1, following the formula. Why does this formula work?

Next, we must consider what states we should have. Since we only care whether or not the string is divisible by 3, it seems to make sense that all we care about is the remainder the current string leaves when divided by 3. There are 3 possibilities – thus we will construct our DFA with three states: 1 for all strings that are divisible by 3, 1 for all strings that are equivalent to 1 (mod 3), and finally a state for all strings that are equivalent to 2 (mod 3). 

Now, we will use our modulo arithmetic rules to compute each transition in our DFA.

Couple Tips for designing DFAs in general

When you are making a DFA you need to consider what you are looking for in a string. What information do you have to “remember” about a particular string to decide if it is in the language your DFA accepts or not. This “remembered” information can only be stored in states. Hence, each state you create in your DFA should have an attached “meaning” of some sort. (For example, if you are in state 1, that means the last character you read in was an a.) Having a meaning attached to each state makes it easier to place transitions in your machine. 

Next, some states must correspond to strings that are accepted, and others do not. (You can not have a state such that if you are in it, sometimes you should accept, and sometimes you should reject.) Thus, the meaning of your states should somehow align with the language you are trying to accept. Carefully pick which states should be final states and which should not be.

Always test your DFA with simple strings in the language. (It’s always smart to test out all strings of lengths 0, 1, 2 and 3 to make sure they work...)

Remember that there is a fair amount of creativity involved in creating DFAs. You may not create one correctly with your first, second or third effort. Sometimes you’ll have to try a couple significantly different approaches before you get one that works. 
