Strings and Languages

A string is simply the concatenation of several letters in an alphabet. Typically, we will define an alphabet as a set (. So, for example, we could have ( = {a,b}. 

Then, a string over this alphabet (, would be any “word” formed with only the letters or characters a and b. There is no limit on the length of a string. It must simply be a non negative integer. 

This means there is a string of length of length 0. This is known as the empty string. The empty string is typically denoted by (. In particular, if you concatenate the empty string with any other string, you get back that string. It seems silly to have an empty string, but it will help out in certain situations. Make sure you do not confuse the empty string with the empty set. Also, recognize that ( can never be a letter of an alphabet.

In the book, they define non-empty strings in the following manner :

(n is a string of length n over the alphabet (, and is defined as below:

1) (1 = (.

2) (n+1 = {xy | x((, y((n}

And any string is simply a subset of (n, where n is a positive integer.

Using the book’s definition, we can define the following two sets:

(+ = (n=1 to ( (n, or in English, (+ is the set of all strings of positive length over an alphabet (.

(* = (n=0 to ( (n, or in English, (* is the set of all strings of over an alphabet (.

Now, that we have these definitions, we can define a language.

A language L over an alphabet ( is any subset of (*. If a string w ( L, then we say that the string w belongs in the language L. Otherwise we say w does not belong in L. (For example, horse (English, but gjtysihg (English, to the best of my knowledge.)

In this class, we will focus on a specific type of language: regular languages.

In particular, a language is a regular one if and only if it can be expressed as a regular expression. You can think of a regular expression as a mold. For example, when you are trying to find a file on your computer, but don’t know the EXACT name of the file, you may enter Eric*.doc because you know that you are searching for a file whose name starts with Eric and is a Word document. 

In this situation, the string with a star in it is a mold applying to an infinite number of strings – namely those that start with Eric and end in .doc. It may seem easy to see if a string fits a mold, but there’s more than meets the eye here. 

Consider the mold *a*a. When trying to mold the string banana, you may match the first star to the b, and the second star to the first n, and conclude that the string doesn’t fit the mold. BUT, this is not the case because we can match the second star to nan instead of just an n. Thus, if there is ANY way for a string to match a mold, then that string is said to be described or specified by that mold.

Regular expressions are nothing but molds. To determine if a particular string is an element of the language described by a regular expression, you must see if there exists a way to make that string fit to the mold given by the regular expression. Here are the rules for forming a regular expression :

R is a regular expression if R is

1. a for some a((,

2. (,

3. (
4. (R1 ( R2), where R1 and R2 are regular expressions

5. (R1 ( R2), where R1 and R2 are regular expressions

6. (R*), where R is a regular expression

Each of these needs some explaining. The first three are the “building blocks” or the atoms of regular expressions. Only the correct character ‘fits’ #1, while only an empty string (a string of length 0) fits #2, and absolutely nothing fits #3.

These three alone are quite boring and useless. However, we can create more complex expressions using rules 4, 5 and 6. To decide if a string ‘fits’ to the mold of (R1 ( R2), you need to check if it fits to the mold of R1 OR if it fits to the mold of R2. If the answer to either question is yes, then the string is a part of the language described by (R1 ( R2).

To decide if a string fits the mold of (R1 ( R2) is a bit more complicated. Here is the rule:

Let w be a string. If there exists a way to ‘split up’ w such that w=xy, (the concatenation of strings x and y) where x is in the language described by R1 and y is in the language described by R2, then w is in the language described by (R1 ( R2). Once again, just because one way to ‘split up’ the string doesn’t work, so to speak, doesn’t mean that the string is NOT in the language. Take this example:

Consider the language described by the regular expression:

(a ( baa) ( (bba ( bb).

The string baabb is in the language in spite of the fact that the string b does NOT match (a ( baa) and the string aabb does not match (bba ( bb).

Finally, the most difficult rule of all is the Kleene star(*) rule. A string w is in the language described by R* if w = x1( x2(... xn for some non-negative integer n, where xi is a string in the language described by R for 1 ( i ( n, for some set of xis. The difficulty here is that for a string to be in the language, there must simply be some way to ‘break up’ the string into smaller pieces that are all described by the mold R. There are WAY TOO MANY ways to split up a string for us to really check them all. Thus, we must be careful before we claim that a particular string is NOT in the language described by some regular expression, especially ones with *s in them.

So, for example, here are some regular languages:

1. Any finite language: You can form each string in the language by concatenating elements from ( together, and you can put these all together with (, to form the corresponding regular expression

2. {(ab)n | n ( 0}, the corresponding regular expression is (ab)*. (This language contains the strings  (, ab, abab, ababab, etc.)

3. The regular expression for the set of all languages that end in bb is (a ( b)*bb.

One thing to keep in mind is that we will be using letters to stand for BOTH elements of the alphabet AND languages themselves. I will try to stick to the convention that a lowercase letter signifies an element of an alphabet where as an UPPERCASE letter signifies an entire language.

You can essentially treat regular expressions identical to regular languages.  The basic difference is that a language should be written out in a set format, but a regular expression is not. The terminology often used is that a regular expression describes a language. Thus, you wouldn’t say bba(R when R is a regular expression. Rather, you’d say bba( L, where L is the language described by the regular expression R.

Basic rules for regular expressions

(Note: each of these rules applies for languages as well.)

1. ( ( R = R ( ( = (
2. ( ( R = R ( ( = R

3. (* = (
4. (* = (
5. R1 ( R2 = R2 ( R1 

6. R ( ( = R

7. R ( R = R

8. (R*)* = R*

9. R1( (R2 ( R3) = R1(R2 ( R1(R3

10. (R1 ( R2) (R3 = R1(R3 ( R2(R3

11. (R1(R2)*(R1 = R1((R2(R1)*

12. (R1( R2)* = (R1* ( R2)* = R1*((R1( R2)*

Also, here is a rule for languages that will help with certain problems:

Let L1 and L2 be languages. If L1 ( L2, then we have L1*( L2*.

Now I am going to show you a couple examples of trying to come up with regular expressions for languages. Here is the main difficulty with these problems:

1) You may come up with a regular expression that matches all the strings in the language you want to express, PLUS extras.

2) You may come up with a regular expression that does NOT match ALL the strings in the language.

Notice that for a regular expression R to represent a particular language L, R must mold to every single string that is in the language L, and NOT mold to every single string that is NOT in L. Only by ensuring these two things can we be certain that a regular expression R describes the language L perfectly.

Consider trying to find the regular expression over ( = {a,b} that denotes all strings that start with a and have an even number of b’s.

The regular expression is a(a*ba*b)*a*.

We can go through and formally prove this, but I will simply give you an intuitive argument as to why this works. Since we have 2 b’s inside of our star, and no others, any string that matches this regular expression MUST have an even number of b’s.  Furthermore, any string with an even number of b’s will match this regular expression. (Consider that each b is separated by 0 or more a’s – let these a’s be matched by the corresponding a* inside the parentheses, and we can match any number of a’s at the end of the string as well. And of course, the first character is an a.) 

Here is an example for you to try:

Find the regular expression for the set of strings that have no consecutive a’s in them.
