Proof That Euclid’s Algorithm Works

Now, we should prove that this algorithm really does always give us the GCD of the two numbers “passed to it”. First I will show that the number the algorithm produces is indeed a divisor of a and b.

a = q1b + r1, 

where 0 < r < b

b = q2r1 + r2,

where 0 < r2 < r1

r1 = q3r2 + r3,

where 0 < r3 < r2

.

.

ri = qi+2ri+1+ ri+2,
where 0 < ri+2 < ri+1

.

.

rk-1 = qk+1rk

From the last equation, we know that rk | rk-1. So, we know that we can express rk-1 = crk, where c is an integer. Now consider the previous equation:

rk-2 = qkrk-1+ rk = qkcrk, + rk = rk(qkc + 1)

Thus, we have that rk | rk-2.

In our equation previous to that one, we have:

rk-3 = qk-1rk-2+ rk-1
From here , since rk | rk-1 and rk | rk-2, using our rules of divisibility we have that rk | rk-3. As you can see, we can continue this process, considering each previous equation until we get to the last two, where we will find that rk | a and rk | b. Thus, we find that Euclid’s algorithm indeed gives us a common factor of a and b.

Now, we have one more part to prove – and that is to show that the common divisor that Euclid’s algorithm produces is the largest possible. This proof is going to look similar to the previous one, but it is different in that we will start by assuming that a and b have a common factor d, and then show that d | rk.

Consider an arbitrary common factor d of a and b. If d is a common factor, we can rewrite a and b as follows:

a = da’
b = db’, where d, a’, b’ are all positive integers.

Now, consider the first equation from Euclid’s algorithm:

a = q1b + r1. 

r1 = da’ - q1db’ (Substitute for a and b, and solve for r1.)

    = d(a’ - q1b’)

Thus, we have that d | r1.

Now, consider the second equation, and repeat the steps we did on the first, this time solving for r2. (Note: We will let r1=dr1’, where r1’ is an integer.)

b = q2r1 + r2.

r2 = db’ - q2dr1’

    = d(b’ - q2d)

As you can see, we can continue this process through each of the equations until we hit the second to last one, where we will have:

rk-2 = qkrk-1+ rk 

rk = drk-2’ - qkdrk-1’ = d(rk-2’ - qkrk-1’), 

thus, d | rk. 

But this says that any arbitrary common factor of a and b that we originally picked divides into rk, the value that Euclid’s algorithm produced. Since we know that rk IS a common factor to both a and b, this shows that is must be the largest possible common factor, or the GCD(a,b).

Well – Ordering Principle

Every non-empty subset of Z+ (the positive integers) contains a smallest element. Essentially the set Z+ is well-ordered.

Well, DUH!!! This sounds like a really useless principle. BUT, it can be used to show that mathematical induction is a valid technique. This is going to be an useful proof technique.

Here is the basic idea behind mathematical induction:

The goal of mathematical induction is to prove an open statement s(n) for all non-negative integers n, or all positive integers n. We can do this in the following manner:

1) Show that s(1), the base case, is true.

2) Show that s(k) ( s(k+1), for all positive integers k. 

We must show that proving the two above statements is equivalent to proving the open statement for all non-negative integers n.

Now, let’s assume that these two conditions could hold while the statement s(n) is NOT true for all positive integers n. This means that we can create a set F = { t ( Z+ | s(t) is false } that is non-empty. 

Since this set is a subset of Z+, it must contain a smallest element. Let that smallest element be w. (Thus  s(w) is NOT true is our assumption.) We know that w ( 1 since that is the first requirement for an inductive proof to hold. Thus, we know that w > 1, which means that w-1( Z+. 

But, we know that if w-1( Z+, AND that s(w-1) is TRUE because we assumed that w was the SMALLEST value for which s(n) was NOT true. Combining that with the fact that  s(k) ( s(k+1), for all positive integers k, then we can plug in k = w-1 to get:

s(w-1) ( s((w-1)+1) or s(w-1) ( s(w), implying that s(w) is true. But, this contradicts our assumption that s(w) is false.

Thus, we can conclude that proving the 2 given statements proves the open statement under consideration.

Mathematical Induction

Often times, we would like to make a statement about the natural numbers (0,1,2,...) such as: for all natural numbers n,

the sum of 1+2+3+...+n = n(n+1)/2.

However, proving such a statement may be difficult if we are not very creative or proficient with algebra. In particular, it would be nice if we could prove a given statement without plugging in every possible value of n (which would clearly take forever...) or using terribly clever mathematics.

Induction makes this possible. The induction principle is as follows:

Let A ( Z+, where the following two properties hold:

1) 1 ( A

2)  k ( A ( k+1 ( A

Then we have that A = Z+.

In layman’s terms, the way we will use this principle to prove statements is the following way.

Given an open statement s(n), where n is an arbitrary non-negative integer, we must show these two following things to prove the statement for all positive integers n:

1) s(1)

2) s(k) ( s(k+1) for all positive integers k.

Now, the first step is relatively simple. Since s(1) is a simple statement, you must simply plug in 1 into the open statement and assess the validity of the statement.

The second step must be broken down into two steps. Notice that the second statement is vacuously true if s(k) is false. Thus, we do NOT care about these cases. Instead, what we must do is the following:

1) Assume that s(k) is true.

Now, under this assumption, we must show that s(k+1) is true. So that is the following step.

2) Show s(k+1) using the assumption in the previous step.

If you happen to do step 2 WITHOUT any assumption from the previous step, then your proof is not an inductive one, it is merely a direct proof which would have worked if you simply tried to prove s(n) directly to begin with.

Real quickly, here is how it works symbolically...

If we have s(1), and s(k) ( s(k+1), we can plug in k=1 so

s(1)

s(1) ( s(2)

(s(2)

Then, consider plugging in k=2 so

s(2)

s(2) ( s(3)

(s(3)

Continuing in this fashion, we can see that no matter what the value of a positive integer n is, we can eventually show logically that s(n) is true. The reason induction works so well is that it is often much easier to prove the open statement s(k) ( s(k+1) than the open statement s(n) directly.

Induction is probably one of the most straightforward proof techniques we will go over in this class. Once you have the algorithm down, you should really be able to finish most inductive proofs. Here are some common mistakes that beginning students make with induction:

1) They do not state what variable they are inducting on. In particular, an open statement may contain more than one variable in it, like the following: 

(2a+1)n ( 1 (mod 2) for all a,n(N.

2) They do not state the assumption being made. This step is easy. All you do is write, “Assume that ...” and replace the ... with the EXACT form of what you are trying to prove.

3) In trying to prove s(k+1) assuming s(k), students will often try to manipulate both sides of an equation, if s(n) is some sort of equation. This is NOT allowed. In order to prove s(k+1), one must take the LHS and manipulate it algebraically until is looks exactly like the RHS. In executing these manipulations, you will have to make a substitution based on the inductive hypothesis from step 2.

Now, consider trying to prove the following:

The sum of the first n integers cubed is n2(n+1)2/4.

1) Base Case n = 1. Notice in this case that we will show s(1) for our base case instead of s(0). Depending on your problem, your base case can be different values. Typically it will either be s(0) or s(1) though.

This is true since 1 = 12(1+1)2/4.

2) Assume for an arbitrary integer n=k, the statement is true:

     The sum of the first k integers cubed is k2(k+1)2/4.

3) Under this assumption we must prove that the statement is true for n=k+1. Thus, we must show:

     The sum of the first (k+1) integers cubed is (k+1)2(k+2)2/4.

Before I get to my next example, let me go over some basics of divisibility:

if a | b, then there exists and integer c such that b = ac. Thus, to prove that an integer b is divisible by an integer a, we must express b as the product of a and another integer.

Now, consider using induction to show that 5 | 32n + 4n+1, for all non-negative integers n.

We will prove the formula using induction on n.

1) Base Case n=0. This statement is true for n=0 since 

32*0 + 40+1 = 1 + 4 = 5, and we know that 5 | 5.

2) Assume that the formula is true. Hence, assume that 5 | 32k + 4k+1, for an arbitrary non-negative integer n=k.

3) Now we must show that the formula is true for n=k+1. That is, we must show that 5 | 32(k+1) + 4(k+1)+1, using our assumption from step 2.

Consider the quantity 32(k+1) + 4(k+1)+1. We must show that it is equal to 5 times some integer.

32(k+1) + 4(k+1)+1 = 9*32k + 4*4k+1



   = 5*32k +4*32k + 4*4k+1



   = 5*32k +4(32k + 4k+1)

Now, since we have assumed that that 5 | 32k + 4k+1, then we can express 32k + 4k+1 = 5d, for some integer d. So now we have:




   = 5*32k +4(5*d) , 
using the inductive hyp.




   = 5(32k + 4d)

But, we know that 5 | 5(32k + 4d). Thus, we have proven s(k+1) assuming s(k), completing the inductive proof. 

Hence we can conclude that 5 | 32n + 4n+1, for all non-negative integers n.

Induction Class Exercise

Using induction prove the following formula for all integers n>0.
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