Topics Covered on Exam

Relations: definition and graphical view, binary and n-ary relation, inverse, composition of a relation, associativity of composition, reflexive, irreflexive, symmetric, anti-symmetric, and transitive properties, equivalence relations, partial ordering relations, reflexive, symmetric, and transitive closures

Functions: definition and graphical view, composition of a function, inverse, injection, surjection, and bijection.

Sections in the book that will be useful:

Chapter 5: Sections 1, 2, 6

Chapter 7: Sections 1, 4

Also, since a relation is simply a set, it may be useful to review material on sets from chapter 3.

How to study:

First, flip through my notes, making sure you understand the examples presented. Look at the past couple homework solutions, and also look at previous homework questions on this material. Practice these problems. Finally, flip through the book to make sure you understand what is in each of the sections I mentioned above. Keep in mind that I may not have covered everything in these sections.

Format

Unlike last time I will actually have some T/F and multiple choice/matching, as well as some short answer. However, as always, I will have a few proofs of the nature that you have seen over the past three or four weeks. The key to these proofs is to first understand what the question is asking. Once you have determined that, apply the pertinent definitions in such a way that you can show the assumptions imply the conclusion.

Some specific things to remember:

1) A relation can be defined in two ways: either explicitly listed such as R = {(1,2), (2,3)} or generally as the following: 

R = {(a,b) | a(Z+ ( b(Z+ (  b = a + 1}

Make sure you understand how to interpret both. Example:

R = {(a,b) | a(Z+ ( b(Z+ (  (c | a = b + 2c, where c(Z}

This is read as: “The set R contains all elements (a,b) such that a and b are positive integers and there exists an integer s such that a = b + 2c.”

In essence, the value of c has little to do with the membership in the set. 

2) Know how to use the definition of relation/function composition. Consider the situation where R, S, and T are all relations over the set A x A. For example, if we know that (x,y)((R(S)(T, we can deduce that (x,z) ( R(S and (z, y) ( T, for some element z in A. Similarly, if (x,z) ( R(S, then we know

that (x,w) ( R and (w,z) ( S, for some element w of A. 

Now why is it that I used a z one time in applying the defintion and a w the next time?

The problem with using z both times is that all relation/function composition says is that there IS some intermediate element, not that it is the same for each element in the composition. Thus, there is a distinct possibility that z and w are NOT equal. If we were to call them with the same variable name, we would not be taking that into account, and may make an error in our proof.

So, this brings up the point to realize that all of the formulas, definitions you have are in terms of variables. You are allowed to plug in anything for those variables... as long as the “type” matches so to speak...

3) How to compute a relation inverse: If a relation is defined as {(a,b)| some restriction on a and b...} then the inverse of that relation is:

{(b,a)| that same restriction as above on a and b...}

Basically, if you have an explicit listing, you simply flip all ordered pairs in the relation around, ie.

If R = {(1,2), (2,4)} then R-1 = { (2,1), (4,2) }

4) Reflexive, Symmetric, blah, blah,...

First of all, memorize each of these definitions. More importantly, try to understand what they mean, either graphically or logically. Remember, each of these are properties of a relation, not part of a relation, or an element.

Each of these makes a claim that all elements in the relation satisfy a particular property. To disprove one of these, you must find a single counter example.

To prove one of these properties, you must assume that the if part is true, and under that assumption show that the then part logically follows.

5) Each of the closures mentioned in homework #4 essentially augment a relation. Keep in mind how this works, ie. the definitions of these. Memorize and try to understand what they mean. Essentially, r(R) takes the set R and adds whatever it needs to to the set to make it reflexive, the same is true of the other two closures.

6) Computing mathematical function inverses: switch the x and y and solve for y.

7) Computing mathematical function compositions: remember that f(g(x)) and g(f(x)) are typically not the same thing.

8) Injection, Surjection, Bijection: First memorize these definitions, then try to understand what they mean. Often times it is easier to gain understanding of these terms in a pictorial sense.  Remember a bijection is simply both an injection and a surjection. Also make sure you know all the extra restrictions placed on a function compared to a relation.

1) (15 pts) True/False: Circle the correct answer. Please be clear with your answer!!!(+1 for a correct answer, 0 for no response, and –1 for an incorrect response.)

a) All functions are surjective.




False

b) The relation R={(1,3), (2,4), (5,7), (6,8)}

True


     is transitive.

c) Let f be a bijection from the finite set A to the 
True


    finite set B. |A| =|B|.

d) If R is a non-empty relation, then so is R(R.


False
e) If a relation R is symmetric, it contains an 


False
    even number of elements.

f) A partial ordering relation must be 

True


    anti-symmetric.

g) The total number of edges in a complete 



False
     graph with 5 vertices is 15.

h) All walks are paths.





False
i) There exists a graph G such that the sum of the 


False
    degrees of its vertices is 9.

j) If f: A( B and g: B ( C are both injections, 
True


    then g(f is as well.

k) If a relation R is symmetric it can not be 



False
    anti-symmetric.

l) Let [x] and [y] be equivalence classes in an 
True


    equivalence relation. [x]=[y] or [x]([y] = (.

m) For 2 relations R and S that are subsets of AxA, 

False
     R(S = S(R

n) Let A={1,2,3}. The number of possible 

True


     relations R  that are subsets of AxA is 29.

o) Let A={1,2,3}. Let R be a relation over AxA 


False
     such that R={(1,2),(2,1),(3,2)}. R is a bijection.

2) (8 pts) Let R and S be relations that are subsets of AxA. (A={1,2,3,4}. If R={(1,2), (1,3), (2,4), (3,1), (3,2), (4,4)} and S={(1,4), (2,1), (2,3), (3,2), (4,1), (4,2)}, then what is R(S? 

{(1,1), (1,2), (1,3), (2,1), (2,2), (3,1), (3,3), (3,4), (4,1), (4,2)}

3) (10 pts) Let f(x) = 3x2 – 6(x – 2) and g(x) = (x + 7)/3. Compute f(g(x)) and g(f(x)).

f(g(x)) = f((x+7)/3) = 3(x+7)2/9 – 6((x+7)/3 – 2) 
            = (x2 + 14x + 49)/3 – 6((x+1)/3)

            = (x2 + 8x + 43)/3

g(f(x)) = g(3x2 – 6(x – 2)) = (3x2 – 6(x – 2) + 7)/3 = x2 – 2x + 19/3
4) (10 pts) Prove or disprove: If a relation R, defined as a subset of A x A, is symmetric, then show that R ( R is symmetric as well.

We must prove under the assumption that R is symmetric that if (a,b)(R(R, then (b,a)(R(R.

if (a,b)(R(R, by the definition of function composition, we must have an element c(A such that (a,c)(R and (c,b)(R. But we know R is symmetric. Thus, we can deduce that (c,a)(R and (b,c)(R. But, if this is the case, by the definition of function composition, we must have (b,a)(R(R, because (b,c)(R and (c,a)(R. This is exactly what we needed to prove. Thus, R(R is symmetric.

5) (8 pts) Prove or disprove: s(R) ( t(R).

Disprove: Consider R = {(1,2)}. s(R) = {(1,2),(2,1)} and t(R) = {(1,2)}, but in this situation, s(R) is NOT a subset of t(R).

6) (7 pts) Let f(x) = (2x – 1)/(x+3), where the domain is all reals except for x = -3. Find the inverse of this function.

x = (2y – 1)/(y + 3)

x(y + 3) = 2y – 1

xy + 3x = 2y – 1

3x + 1 = 2y – xy

(3x + 1) = y(2 – x)

y = (3x + 1)/(2 – x) OR – (1 + 3x)/(x – 2) 
(Domain is all reals except for x=2, and the range is all reals except for y = –3 .)
7) (10 pts) Let f: A( B and g: B ( C denote two functions. Furthermore, assume that |A| = |B| = |C|, and that each of these values is finite. Prove that if f is NOT a bijection, then g(f can not be one either.

If f is not a bijection, then either it is not injective or surjective. Assume f is injective. If this is the case, then we know that the size of the range of f is greater than or equal to the size of the domain of f. Since our co-domain, B, has the same size as the domain A, we know that the range and co-domain are of the same size. That means that for any element b(B, there exists an a(A such that f(a)=b. But, this is the definition of a surjective function. If a function is both injective and surjective, it is a bijection, which contradicts our given statement. Thus, our assumption that f was injective is incorrect.
Now that we know f is NOT injective, we know that for two distinct elements a and a’ in set A, f(a) = f(a’). We know that for some element b(B, b = f(a) = f(a’). Let each of these be an input to the function g to derive:

g(b) = g(f(a)) = g(f(a’))

The function g(f(x)) can not be an injection if we have g(f(a)) = g(f(a’)) and a(a’. Thus, it follows that the function is not a bijection either.
8) (15 pts) Consider the following relation:

R = {(a,b) | a(Z+ ( b(Z+ ( (a and b contain a common digit)}

So, for example (13, 19) ( R since both numbers share the digit 1, but (1234, 56) ( R, since both numbers do not have a single digit in common. Is this relation reflexive? irreflexive? symmetric? anti-symmetric? transitive? 

reflexive: Yes – all numbers share all of their digits in common.

anti-reflexive: No: (1,1)(R

symmetric: Yes – if the numbers a and b share a digit in common, it follows that the


         numbers b and a share the same digit in common.

anti-symmetric: No – (13,19)(R AND (19,13)(R.

transitive: No – (13, 19)(R and (19, 92)(R but (13, 92)(R.

9) (16 pts) Let f: A( B and g: B ( C denote two functions. If g(f is an injection, prove that f must be an injection. Also, show that it is not necessary for g to be an injection. That is, show that there is a case where g is not an injection, but g(f  is an injection.

We must show that f is an injection. We are given the fact that g(f is an injection. 

We will prove the statement using contradiction. Assume that f is not an injection. In this situation, we can find two distinct elements of the set A, a and a’, such that f(a) = f(a’).

Let each of these be inputs to the function g. Then we have the following:

g(f(a)) = g(f(a’)), where a(a’, since we assumed the two to be distinct.

BUT, this contradicts the assumption that g(f is an injection. Thus, we can conclude that f must be injective.

Here is a small example that satisfy the restrictions of the question, but where g is not injective:

A = {1} B={a,b} C={z}

f(1) = a

g(a) = z

g(b) = z

g(f(1)) = z

Here we have that g(f is not only injective, but also bijective. But, g is not injective since g(a)=g(b).
