Problems from last time...

(R ( S) ( (R ( T) ( R ( (S ( T) is false. Here is a counter example:

A = {1,2}
B = {a,b}
C = {x,y}

R = {(1,a), (1,b)}

S = {(a,x)}

T = {(b,x)}

Here we have S ( T = (, so R ( (S ( T) = (.

But, R ( S = {(1,x)} and R ( T = {(1,x)} 

so (R ( S) ( (R ( T) = {(1,x)}, proving the statement false.

Prove or disprove: If R ( S = R ( T, then S = T.

This statement is also false. Simply use the counter example given in the problem above to validate this claim.
Definitions for Binary Relations over A x A

A majority of the binary relations we will be dealing with are a subset of the Cartesian product of a particular set with itself.

If we have R ( A x A, then we have the following definitions:

1) R is reflexive if (a(A, (a,a) (R.

2) R is irreflexive if (a(A, (a,a) (R.

3) R is symmetric if (a(A, aRb ( bRa 

4) R is anti-symmetric if aRb ( bRa ( a=b.

5) R is transitive if  aRb ( bRc ( aRc.

Consider the following relation R defined over {a , b, c}:

R = { (a,b), (a,c), (b,a), (b,c), (c,c) }

R is not reflexive since (b,b) (R

R is not irreflexive since (c,c) (R

R is not symmetric since we have (a,c) ( R, but (c,a) ( R.

R is not anti-symmetric since (a,b) ( R and (b,a) ( R.

R is not transitive since (b,a) ( R, (a,b) ( R, but (b,b) ( R.

Now, I will show you some examples of more meaningful relations that actual have some of these properties.

Consider a relation R over the set {jelly, bread, ham} that is defined as foods that go well together. The relation could be:

R = { (jelly, jelly), (bread, bread), (ham, ham), (jelly, bread), (bread, jelly), (ham, bread), (bread, ham) }

This relation is reflexive since for each element a, (a,a) (R. Essentially, we can mix anything with itself and it’ll still be edible.

This relation is also symmetric. The reason for this is that if we can mix one food first with a second food, then we can ALSO mix the second food with the first. Symbolically, for each pair for related items a,b ( A such that aRb, we also have bRa.

This relation is NOT transitive. Essentially, the way we have it defined, we can have jelly with bread, and bread with ham, but we CAN NOT eat jelly with ham...and that violates transitivity.

Now consider this example that is more mathematical. R ( Z+ x Z+ as follows:

R = {(a,b) | a( Z+ ( b( Z+ ( ((n | n( Z+ ( a = bn) }

In English, this reads, the relation defined over all positive integers such that the first integer is a multiple of the second integer.

This is reflexive because for all positive integers a, we have aRa, since a=1*a.

This is anti-symmetric. If we have aRb and bRa, that means that a = n1*b for some integer n1, and that b = n2*a for some integer n2. Substitute in for b in the first equation to get

a = n1*n2*a

Divide both sides by a to get 1 = n1*n2. We know if n1,n2( Z+, then both of them MUST BE 1, hence a=b.

This relation is transitive. Consider the situation where aRb and bRc. Then we have the following:

a = nb, for some positive integer n

b = mc, for some positive integer m

Thus, a = n(mc) = (nm)*c which implies that aRc.

Any relation that is reflexive, anti-symmetric AND transitive is known as a partial ordering relation. A partial ordering relation is one that can “compare” elements together in a hierarchical way. (One element is at least as high as another one, on the hierarchy.)

Equivalence Relations

An equivalence relation is one that is similar to a partial ordering relation defined above, but different in one critical aspect: it must be symmetric instead of anti-symmetric. In particular, a equivalence relation gives a way to group like elements in a set together. 

Consider this standard example used in CS classes when introducing an if statement:

Define a relation over the set A = {0,1,...,100} as follows:

R = {(a,b) | a( A ( b( A ( (a DIV 10 = b DIV 10) }

In essence, this relates elements together if they lie within the same grade range(0-9, 10-19, ..., 90-99, 100). 

We can see how this is reflexive – for all elements a in A we have a DIV 10 = a DIV 10.

Clearly this is symmetric too. If we have a DIV 10 = b DIV 10, then we have b DIV 10 = a DIV 10. Hence if aRb, then bRa.

Finally, this is also transitive. If a DIV 10 = b DIV 10 and b DIV 10 = c DIV 10, we always have that a DIV 10 = c DIV 10.

Try to show that modular equivalence is a equivalence relation over the positive integers. Remember that a modular equivalence is the following:

a ( b (mod m) if m | (a-b).

Thus the relation defined is the following:

R = { (a,b) | a ( b (mod m), where m is an arbitrary pos. int.}

The relation is clearly reflexive since for all positive integers a, we have m | a – a.

The relation is also symmetric since if we have aRb, that means that we have m | a – b. But, if m | a – b, we have that m | b – a.

(Formally, you’d say that mc = a – b, for some integer c, then we have m(-c) = b – a, hence m | (b – a).)

Finally, if we have aRb and bRc, then we know the following:

m | a – b

m | b – c

m must divide the sum of these, hence we have 

m | (a – b) + (b – c), so m | a – c, but this implies that

a ( c (mod m), thus we have shown that aRc, as desired.

Equivalence Classes

Now, each element that is related to each other in an equivalence relation is said to be in the same equivalence class. More formally, we have the following:

For an equivalence relation R over a set A, an equivalence class for an element x is defined as follows:

[x] = { a | a ( A, and aRx}

Next, we can define a partition of the set A based of the relation R as follows:

1) if x (A ( y (A, either [x] = [y] OR [x] ( [y] = (.

2) if x(A, x([x]

We can show that all equivalence relations R over a set A adhere to the restrictions above.

We can prove 1, as follows:

If [x] ( [y] = (, we are done. Now consider the other case that [x] ( [y] ( (. That means that we have an element z of A such that z ([x] AND z ([y]. This means that zRx and zRy. But, by the symmetry or R we have xRz. Then, due to transitivity, we have xRy. Now, we can prove that [x] ( [y]. Consider an arbitrary a([x]. This means we have aRx, but we also have xRy. Hence, by transitivity, we have aRy, so a([y], proving that [x] ( [y]. Similarly, we can prove [y] ( [x]. Thus, we have [x] = [y].

We always have x([x], since R is reflexive.

If R is an equivalence relation defined over a set A, we will let A / R denote the set of these equivalence classes. Formally,

A / R = {[x] | x ( A}.

Finally, we shall prove that any partition of a set such that each element is related to each other element in a partition is an equivalence relation.

Let R be the relation for a particular partition.

Clearly, R is reflexive, since each element in a single partition is related to itself, and each element belongs in a partition.

R is also symmetric since if xRy, both x and y HAVE to be in the same partition, hence we must also have yRx.

Finally, if we have xRy and yRz, that must mean that x, y, and z HAVE to be in the same partition. In particular, x and z are in the same partition, thus we also have xRz, proving that R is transitive as well. 

Hence, R is an equivalence relation.

