Mathematical Functions

In mathematics, a function is an equation where you “plug in” a value, and get an “answer” so to speak. In particular, whenever you plug in a particular value, you must get a SINGLE answer. (You should also get the same answer always.) Functions graphed on the x-y plane have to pass the vertical line test.

Now, in discrete mathematics, we will be using functions a bit differently & we will also coin a new term “relation”. In particular, a function is a specific type of relation.

In standard high school mathematics, we typically deal with functions of one variable. We always graph a function of the form y=f(x), where the left hand side is entirely dependent on x. Depending on what the function f(x) is, there is always a set of values that are VALID to “plug” in to the equation.  This set is the domain. Similarly, the “answer” you get out of the function will always lie in a particular set. This set is the range.

The problem with using standard functions for discrete mathematics is that many are defined for all real numbers. Namely, it would be nice if we could list every value in the domain of some function. But, we CAN NOT list out each real number. (We can list out each integer however...)

The basis of functions and relations in discrete mathematics is the idea that values of a domain and range should be subsets of a set that can be listed, such as the integers, color, etc.

As we go through different things, I will make analogies to mathematical functions, so you can see the similarities between these and the functions and relations for discrete mathematics.

Relations

A relation is something that relates one set of values to another set of values. Sometimes the relationship that is specified between sets is meaningful, other times it is not.

In general, a relations are defined in the following manner:

A relation R defined over sets A and B is a subset of A x B. Thus, we have R ( A x B. This is known as a binary relation, because it relates elements between two sets.

Consider this example:

Let A = {Orange Juice, Cranberry Juice, Coke} and 

       B = {Rum, Vodka, Peach Schnapps}

If you had some modicum of taste, we could define a relation

Cocktails as follows:

Cocktails = { (Orange Juice, Vodka),(Cranberry Juice, Vodka),



     (Coke, Rum), (Orange Juice, Peach Schnapps) }

Of course, if you do not have any standards, we could have up to 9 pairs listed in our relation for Cocktails.

Graphically, we could use a directed graph to represent this information as follows:

Of course, you can see there are some restrictions with only being able to define binary relations. For example, even if we extended our sets A and B from the previous example to provide for fully stocked bar, we STILL could not define a relation that would include a Long Island Ice Tea. (For any one not familiar with this drink, it contains 4 elements from an extended version of set B.)

Thus, we should define relations between more than two items. In general, we can define an n-ary relation as follows:

An n-ary relation R over sets A1, A2, A3, ... An is a subset of the cartesian product A1 x A2 x A3 ... x An. The degree of this relation R is n.

Now, we could define a relation on A x A x B x B x B x B that would include a Long Island Ice tea as an element of it.

Of course, it is probably more typical that an n-ary relation be comprised of several different sets, but there is no rule against defining a relation using the same set repeatedly, as we have done above.

Also, we can denote an n-ary relation using a table as follows:

Mixer 1
Mixer 2
Liquor 1
Liquor 2
Liquor 3
Liquor 4

Coke
Lemon Juice
Vodka
Tequila
Rum
Gin

...
...
...
...
...
...

Composition of Relations

In math class, given two functions f(x) and g(x), you probably had to figure out the composition of the functions, which is denoted either by f(g(x)) OR f(g(x).

Basically, the way this worked is that you “plugged in” your original x into one function, THEN you used the “answer” that you got from that function to “plug in” to the second function. And the order in which you did it mattered.

The same will be true of the composition of two relations. Here is the formal definition of the composition of two relations R and S, where R ( A x B, S ( B x C:

R ( S = { (a,c) | a ( A ( c ( C ( ((b | (a,b) (R ( (b,c) (S) }

(Notice the difference in order here. When we compose a relation, we write the relations in the order we apply them, not the opposite order, as is done with functions.) Basically, when you compose the relations R and S, you get a third relation which relates elements from the set A to the set C, as long as the “answer” from relation R can be the input for relation S.

We can use a directed graph again. Consider this example:

A = { ABC, NBC, CBS, FOX, HBO}

B = { NYPD Blue, Simpsons, Letterman, ER, X-Files, 

          Dennis Miller Show, Monday Night Football}

C = { Dennis Miller, Marge, Rick Schroeder, Gillian Anderson, 

           Noah Wyle, David Letterman}

R = {(ABC, NYPD Blue), (NBC, ER), (CBS,Letterman), 

         (HBO, Dennis Miller Show), (FOX, X-Files) }

S = { (MNF, Dennis Miller), (Simpsons, Marge), 

         (ER, Noah Wyle), (X-Files, Gillian Anderson) 

         (D. Miller Show,Dennis Miller),(NYPD, Rick Schroeder) }

Theorems about Relation Composition

If R ( A x B, S ( B x C and T ( C x D, then we have the following:

(R ( S) ( T = R ( (S ( T)

Essentially, when doing multiple relation composition, associativity is preserved.

First of all, we see that both sides  define a relation over the set A x D. Next, we have to prove that both define the same relation over that set.

Formally, if we break down the definition, we have:

(R ( S ) ( T = {(a, d)| a ( A and d ( D, and for some c ( C, (a, c) ( R ( S and cTd},

Since (a, c) ( R ( S  means aRb and bSc for some b ( B, by definition of R ( S, the relation (R ( S ) ( T  consists of pairs (a, d) ( A ( D such that for some b ( B and some c ( C, aRb, bSc and cTd.

If we break down the definition of R ( (S ( T) in a similar manner, we will get the exact same thing. Similarly, using the directed graph of the situation will lead to the same conclusion.

Let R ( A ( B, S ( B ( C, and T ( B ( C denote 3 binary relations.  

Then we have the following:

(1) R ( (S ( T) = (R ( S) ( (R ( T)

(2) R ( (S ( T) ( (R ( S) ( (R ( T).  (Usually, this is a proper







        subset.)

Here  is why the first one holds:

First, plug into the definition of R ( (S ( T):

R ( (S ( T) 

= {(a, c)| a ( A ( c ( C ( (b ( B| aRb ( (b, c) ( S ( T}

= {(a, c)| a ( A ( c ( C ( (b ( B| aRb ( ((b, c)( S ( (b, c) ( T)} (Definition of ()

= {(a, c)| a ( A ( c ( C, ( (b(B | ((aRb ( bSc) ( (aRb  ( bSc))}  (Distributive property)

= {(a, c)| a ( A  ( c ( C ( (b ( B | aRb ( bSc} ( 

   {(a, c)| a ( A  ( c ( C ( (b ( B | aRb ( bTc}

= (R ( S) ( (R ( T), definition of (R ( S) and (R ( T).

R ( (S ( T) ( (R ( S) ( (R ( T)
If (a, c) ( R ( (S ( T), then there exists b ( B, such that aRb and (b, c) ( (S ( T), by the definition of ( .  Thus, (b, c) ( S and (b, c) ( T, by the definition of S ( T.  Therefore, since aRb, so (a, c) ( (R ( S) and (a, c) ( (R ( T), by the definition of ( . Thus, (a, c) ( (R ( S) ( (R ( T), and (2) is proved.

As an exercise, I want you to find a counterexample to the claim that 

(R ( S) ( (R ( T) ( R ( (S ( T)

Here is one more problem for you:

Prove or disprove: If R ( S = R ( T, then S = T.
