Test #3 Reference Sheet (Definitions and Theorems)

Part I. Integer and Divisibility Properties:

1. Definition (Divisibility) If a, b are integers, then a | b, or a is a divisor of b, if a ( 0 and there exists an integer c such that b = a c.

2. Definition (GCD) If a, b are integers not both equal to zero, the greatest common divisor of a and b, denoted GCD(a, b) is a divisor of a and is a divisor of b, and is the largest such common divisor.

3. Theorem.  If a | b, and b | c, then a | c, where a, b, and c are integers.

4. Definition (Prime Number) A positive integer n > 1 is a prime number if its divisor must be either 1 or n itself (that is, if m | n, then m = 1 or m = n).

5. Theorem.  If p | ab, where p is a prime number and a, b are integers, then p | a or p | b. 

6. Theorem (Fundamental Theorem of Arithmetic) Any integer n > 1 can be written as a product of prime numbers.  Further, this product is unique except for rearrangement of the terms. 

7. Theorem (Euclid’s Division Theorem) For any integers n and m, m ( 1, there exist integers q and r, 0 ( r < m, such that n = m q + r.  Further, these integers q and r are unique.

8. Theorem (The Extended Euclid’s Theorem) If a, b are non-negative integers not both equal to zero, then there exist integers t and u such that at + bu = GCD(a, b).

Part II. Graphs and Directed Graphs:

9. Definition.  A graph G = (V, E) is an ordered pair of sets V and E, where V denotes the set of vertices (nodes, dots) and E the set of edges (arcs, lines), and each edge connects one vertex to another vertex (which is not necessarily distinct).

10. Definition.  A path in a graph is a sequence of edges e1, e2 , …, en , such that (1) edges ei and ei+1 ,1 ( i (  n–1, have at least one common endpoint; and (2) if edge ei is not a self-loop (i.e., edge ei has two distinct endpoints), and it is not the first or the last edge of the path, then ei shares one endpoint with edge ei–1 and shares the other endpoint with edge ei+1.

11. Theorem.  (Euler, 1736)  A finite, connected graph has an Euler path iff either all vertex degrees are even (in which case there exists an Euler circuit), or exactly two vertices have odd degrees (which correspond to the start and the end vertices of an Euler path).

12. Theorem. Let G = (V, E) denote a finite graph, that is, both |V| and |E| < (.  Then 
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13. Corollary. Let G = (V, E) denote a finite graph.  Then there is an even number of vertices of odd degree.
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14. Theorem. Let G = (V, E) denote a finite digraph (directed graph).  Then

Part III. Relations.

15. [image: image2.wmf].

 

is

 

 

of

 

degree

 

 the

;

 

is,

that 

,

1

1

n

R

A

R

A

n

i

i

n

i

i

Õ

Í

Õ

=

=

Definition.  A relation R defined over sets A and B is a (i.e. any) subset of A ( B, that is, R ( A ( B.  Such a relation is a binary relation; the degree of R is 2.

16. Definition.  An n-ary relation R over sets A1, A2, …, An , n ( 2, is a subset of the cartesian product                                                      

17. Definition.  Let R ( A ( B and S ( B ( C denote two relations.  The composition of R and S, denoted R ( S, is a binary relation over A and C defined as follows:


 R ( S = {(a, c)| a ( A and c ( C, and there exists b ( B such that aRb and bSc}.

18.
Theorem. Let R ( A ( B, S ( B ( C, and T ( C ( D denote three binary relations.  Then relation compositions satisfy the following associative law:


(R ( S) ( T = R ( (S ( T). 

19.
Theorem. Let R ( A ( B, S (B ( C, and T ( B ( C denote 3 binary relations.  Then

(1) R ( (S ( T) = (R ( S) ( (R ( T);

(2) R ( (S ( T) ( (R ( S) ( (R ( T).  (In general, the two sides of (2) are not equal.)

20.
Definition. Let R ( A ( A be a binary relation.

(1) R is reflexive if for all a ( A, aRa, i,e., (a, a) (R.  (In words, each element a of A is related to itself via R.)

(2) R is irreflexive if for all a ( A, (a, a) ( R.  (In words, each element a of A is not related to itself via R.)

(3) R is symmetric if aRb implies bRa, i.e., for all (a, b) ( R, (b, a) ( R.  (In words, whenever a is related to b, b is related to a.)

(4) R is anti-symmetric if aRb and bRa imply a = b.  Equivalently, this means if a ( b, then (a, b) ( R implies (b, a) ( R. (In words, whenever a is related to b, and if a ( b, then b is not related to a.)

(5) R is transitive if aRb and bRc imply aRc, i.e., if (a, b) ( R and (b, c) ( R, then (a, c) ( R.  (In words, whenever a is related to b, and b is related to c, then a is related to c.) 

21. Definition.  Consider a binary relation R ( A ( B.  The inverse of R, denoted R–1, is a binary relation ( B ( A such that R–1 = {(b, a) | (a, b) ( R}, that is, R–1 contains pairs of elements which have the reverse order as they are in relation R.  (Some textbooks call R–1 the converse of R, denoted Rc.)

22. Definition.  Let R ( A ( A denote a binary relation.  The following relations defined over A are called closures:

(a) The reflexive closure of R is r(R) = R ( {(a, a) | a ( A}.

(b) The symmetric closure of R is s(R) = R ( R–1.

(c) The transitive closure of R is t(R) = R ( R2 ( R3 ( ..., where R2 = R ( R, R3 = R2 ( R, etc., where ( denotes relation composition.  Thus, (a, b) ( t(R) (   (a, b) ( Rn,  for some n ( 1  ( there exist a1, a2, …, an ( A, an = b, for some n ( 1, such that (a, a1), (a1, a2), …, (an(1, an) ( R, i.e., there exists a direct path of n edges connecting a to b in the digraph for the relation R.
23. Definition.  A binary relation R ( A ( A is an equivalence relation if R is reflexive, symmetric, and transitive.

24. Definition.  Let m ( 2 be an integer.  Define a binary relation called modulus m and denoted (m , over the set of integers Z, as follows:


for integers a and b, a (m b iff m | (a – b), that is, a – b = mq for some integer q.

Two numbers a and b such that a (m b, are called congruent mod m, often denoted a ( b (mod m).

25. Theorem.  For m ( 2, the Modulus m relation is an equivalence relation.

26. Definition.  Let R be an equivalence relation defined over a set A.  For x (A, the equivalence class containing x, denoted [x], is defined as follows:


[x] = {a| a ( A, and aRx}, i.e., [x] contains all elements of A related to x.

27.
Theorem.  If R ( A ( A be an equivalence relation.  Then the set of equivalence classes defines a partition of A; that is, 


(1) for x ( A and y ( A, either [x] = [y] or [x] ( [y] = (;


(2) for each x ( A, x ( [x].

28.
Theorem.  Let A denote a (non-empty) set and ( be a partition of A, i.e., ( is a set of disjoint subsets of A such that each element of A belongs to exactly one of such subsets.  The relation R over A induced by ( is defined as follows:


for x and y ( A, xRy iff x and y belong to the same subset in the partition (.

Then R is an equivalence relation over A.

Part IV. Functions.

29. Definition.  A binary relation R ( A ( B is called a function if for each element a ( A there exists a unique (i.e., one and only one) element b ( B such that (a, b) ( R.

30. Definition. If a relation R ( A ( B is a function, the set A is called the domain, the set B is the co-domain.  Typically, a function is denoted by lower-case letter f (or g, h), and we use the notation f: A ( B to mean that f is a function defined from A to B.  For each element a ( A, the unique element that is related to a is denoted f(a) and called the image of a, and a the pre-image of f(a). Thus, b = f(a) iff (a, b) ( f, where f is considered as a relation.  The set of all images, denoted f(A) = {f(a)| a ( A}, is the range of f.

31. Definition. Two functions f: A ( B and g: A ( B are said equal, denoted f = g, if f(x) = g(x) for every x ( A, where A is the common domain of the two functions.  

32. Definition. Let g: A ( B be an arbitrary function, and C ( A and D ( B be two arbitrary subsets.  Define the notation g(C) = {g(x) | x ( C} as the set of all images of those elements in C.  Similarly, define g–1(D) = {x | x ( A and g(x) ( D} as the set of pre-images of those elements in D.
33. Theorem.  Let f: A ( B and g: B ( C be two functions.  The composition of f and g as relations defines a function g ( f: A ( C, such that g ( f (a) = g(f(a)).  

34. Note: When there are two functions f: A ( B and g: B ( C, they can be composed to form a function denoted g o f: A ( C, with g precedes f in the composition notation g o f.  However, when f and g are considered as relations (because functions are special cases of relations), the notation for composing would be f o g, which as a relation has the property f o g ( A ( C.  The context should make it clear which convention (either g o f or f o g) is used.

35. Definition. Let f: A ( B be a function.  

(1) f is injective, or is one-to-one, if for all a, b ( A, a ( b ( f(a) ( f(b).  Equivalently, this means if f(a) = f(b) then a = b.  We also say f is an injection in this case.

(2) f is surjective, or is onto, if f(A) = B.  That is, if for every b ( B there exists a ( A such that f(a) = b.  We also say f is a surjection in this case.

(3) f is bijective if it is both injective and surjective.  We also say f is a bijection in this case.

36.
Theorem.  Consider functions f: A ( B and g: B ( C, and the composition g ( f : A ( C.

(a) If both f and g are injective, then g ( f is injective.

(b) If both f and g are surjective, then g ( f is surjective.

(c) If both f and g are bijective, then g ( f is bijective.

37. Theorem. Let f: A ( B be a bijection.  Then the inverse relation of f, defined from B to A as {(b, a) | b ( B and a ( A, and f (a) = b}, is a function from B to A such that g ( f(a) = a for all a ( A, and f ( g(b) = b for all b ( B.  The function g is called the inverse function of f, denoted f–1.

38. Theorem.  Let f: A ( B and g: B ( A be two functions.  If g ( f(a) = a for all a ( A, and f ( g(b) = b for all b ( B, then both f and g are bijections, and they are inverse functions of each other, i.e., g = f–1 and f = g–1.

39. Theorem.  If f: A ( B and g: B ( C are two bijections.  Then (g ( f )–1 = f –1 ( g–1.

40. Theorem (The Counting Principle)  If A and B are two finite sets.

(1) If there is a injection f: A ( B, then |A| ( |B|.

(2) If there is a surjection g: A ( B, then |A| ( |B|.

(3) If there is a bijection h: A ( B, then |A| = |B|.
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