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1. (10 pts.) Compute GCD(1027, 373) using Euclid’s algorithm, and find two integers t and u such that 1027 ( t + 373 ( u = GCD(1027, 373).

The following steps show how the extended Euclid’s GCD algorithm is applied:


1027 = 373 ( 2 + 281 --- (1)


373 = 281 ( 1 + 92     --- (2)


281 = 92 ( 3 + 5         --- (3)


92 = 5 ( 18 + 2           --- (4)


5 = 2 ( 2 + 1               --- (5)


2 = 1 ( 2 + 0

Thus, GCD(1027, 373) = 1 
= 5 – 2 ( 2 , using (5)


= 5 – (92 – 5 ( 18) ( 2, using (4)


= 92 ( (–2) + 5 ( (1+36)  = 92 ( (–2) + 5 ( 37


= 92 ( (–2) + (281 – 92 ( 3) ( 37, using (3)


= 281 ( 37 + 92 ( (–2 – 3 ( 37) = 281 ( 37 + 92 ( (–113)


= 281 ( 37 + (373 – 281 ( 1) ( (–113), using (2)


= 373 ( (–113) + 281 ( (37 + 113) = 373 ( (–113) + 281 ( 150


= 373 ( (–113) + (1027 – 373 ( 2) ( 150, using (1)


= 1027 ( 150 + 373 ( (–113 – 2 ( 150)


= 1027 ( 150 + 373 ( (–413)

Therefore, t = 150, and u = –413, and 1027 ( t + 373 ( u = GCD(1027, 373) = 1.

2. (10 pts.) Suppose a, b, and c are positive integers.  Prove that if GCD(a, b) = GCD(a, c) = 1, then GCD(a, bc) = 1.  

Proof: We use proof by contradiction.  That is, suppose GCD(a, bc) = n > 1 --- (1).  We want to prove this leads to a contradiction.  From (1), n must have a prime factor p according to the fundamental theorem of arithmetic.  Thus, p | a --- (2) and p | bc --- (3) because p | n and n = GCD(a, bc).  Note that (3) implies p | b --- (4), or p | c --- (5).  We now have two cases:

(Case 1) Suppose (4) is true. Note that (4) and (2) imply that p | GCD(a, b), but since GCD(a, b) = 1, this would imply p | 1, which is a contradiction.  

(Case 2) Suppose (5) is true. Note that (5) and (2) imply that p | GCD(a, c),  but since GCD(a, c) = 1, this would imply p | 1, which is a contradiction.  

Therefore, we found a contradiction in both cases.

3. (10 pts.) Suppose a and b are positive integers.  Consider the set S = {am + bn | m and n are integers, and am + bn > 0}.  

(a) (3 pts.) Prove a ( S and b ( S.

Proof: Note that a = a ( 1 + b ( 0, so a ( S.  Similarly, b = a ( 0 + b ( 1, so b ( S.  

(b) (2 pts.) Prove that GCD(a, b) ( S.

Proof: By the extended Euclid’s GCD algorithm, there exist integers t and u such that at + bu = GCD(a, b).  Thus, GCD(a, b) ( S.

(c) (5 pts.) Prove if t ( S, then GCD(a, b) | t.

Proof: If t ( S, then t = am + bn --- (1) for some integers m and n.  Since GCD(a, b) | a, so a = GCD(a, b) ( j --- (2) for some integer j; similarly, since GCD(a, b) | b, so b = GCD(a, b) ( k --- (3) for some integer k.  Substituting (2) and (3) into (1) yields 

t = GCD(a, b) ( jm + GCD(a, b) ( kn = GCD(a, b) ( (jm + kn).  

Thus, we proved GCD(a, b) | t.

(Note: As a result, GCD(a, b) is the smallest element of the set S.)

4. (10 pts.) A graph G = (V, E) is called a bipartite graph if there exist subsets A and B of V such that V = A ( B, A ( B = (, and every edge e connects a vertex of A to a vertex of B, that is, no edges connect two vertices belong to A or two vertices belong to B.  An example of a bipartite graph is given below.








(4 pts.) Prove that if a graph G is bipartite then every circuit of G (if exists) must have an even length (i.e., contains an even number of edges).


Proof: Consider any circuit C =  (e1, e2, …, en) of G.  We assume edge e1= (v1, v2), edge e2= (v2, v3), …, edge ei= (vi, vi+1), …, en= (vn, vn+1), where v1, v2, …, vn+1, are the vertices connected by the circuit and the last vertex vn+1 = v1.  
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V = A ( B,  A = {a, b, c} and B = {d, e}
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Since G = (V, E) is bipartite, let us assume V = A ( B is the partition of the vertex set, and let us assume v1( A (the case that v1( B can be handled similarly).  Thus, vertex v2 ( B by the bipartite property, and v3 ( A, v4 ( B, etc., where the vertices of the circuit alternate between subsets A and B.  Since the last vertex of the circuit vn+1 = v1 ( A, n + 1 must be odd, i.e., n is even, which proves the length of the circuit is even.


(6 pts.) Prove if every circuit of a connected graph G = (V, E) contains an even length, where |V| > 1, then G is a bipartite graph.  


Proof: Pick any vertex, call it a.  Consider the two subsets A = {t ( G | t is connected to vertex a by a simple path of an even length}.  Let B = V – A.  We now prove that the two subsets A and B give the desired partition of V that makes the graph a bipartite graph.  Note that V = A ( B and A ( B = (, because B = V – A.  We need to prove that no two vertices of A are connected by an edge --- (1), and prove that no two vertices of B are connected by an edge --- (2).  


Proof of (1): Suppose the contrary.  That is, suppose two vertices v and w of A are connected by an edge e = (v, w).  Note that there is a path P connecting vertex a to v, and there is a path Q connecting w to a, and both P and Q have an even length, because we assumed v ( A and w ( A.  Thus, we found a circuit that connects vertex a back to itself consisting of path P (from a to v), the edge e (from v to w), then the path Q (from w to a).  However, the length of this circuit is odd because it equals the length of P + length of Q + 1.  This is a contradiction to the assumption that every circuit of G is of an even length.


Proof of (2): Suppose the contrary.  That is, suppose two vertices t and u of B are connected by an edge f = (t, u).  Since the graph is connected, there is a simple path X connecting vertex a to t, and there is a simple path Y connecting u to a.  Note that the lengths of paths X and Y must be odd because otherwise, vertices t and u would belong to subset A (instead of subset B).  We now can form a circuit that connects vertex a to itself by following path X (from a to t), edge f (from t to u), then path Y (from u to a).  Note that the length of this circuit is odd since it equals the length of X (odd) + length of Y (odd) + 1.  This is a contradiction to the assumption that every circuit of G is of an even length.











