COT3100C-01, Fall 2002







S. Lang


Solution Keys to Assignment #4 (40 pts.)

10/24/2002

Use induction to prove each of the following questions, and be sure to mark clearly when and where the induction hypothesis is applied in each question:

1. (10 pts.) 
[image: image1.wmf].
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Answer: We use induction on n ( 1.

(Basis Step) Consider n = 1.  In this case, the LHS = 
[image: image2.wmf].
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 The RHS = 
[image: image3.wmf].
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 Thus, LHS = RHS, so the Basis Step is proved

(Induction Hypothesis) Consider n = k.  Suppose 
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 for some k ( 1.

(Induction Step) Consider n = k +1.  We need to prove 
[image: image5.wmf](1)
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Thus, the Induction Step is proved.  

By induction we proved 
[image: image7.wmf].
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2. 
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Answer: We use induction on n ( 0.

(Basis Step) Consider n = 0.  In this case, the LHS = 
[image: image9.wmf].
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 The RHS = C(r + 0 + 1, 0) = C(r +1, 0) = 1.  Thus, LHS = RHS, so the Basis Step is proved.

(Induction Hypothesis) Consider n = k.  Suppose 
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(Induction Step) Consider n = k +1.  We need to prove 
[image: image11.wmf](1).
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Thus, the Induction Step is proved.  

By induction we proved 
[image: image13.wmf] 
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for all n ( 0.

3. (10 pts.) Prove that 421 | (20n+2 + 212n+1) for all integer n ( 0.

Answer: We use induction on n ( 0.

(Basis Step) Consider n = 0.  In this case, 20n+2 + 212n+1 = 202 + 21 = 421, so it is divisible by 421, and the Basis Step is proved.

(Induction Hypothesis) Consider n = k.  Suppose 421 | (20k+2 + 212k+1) for some integer k ( 0; that is, suppose 20k+2 + 212k+1 = 421m for some integer m.

(Induction Step) n = k + 1.  We need to prove 20k +1+2 + 21 2(k +1)+1 = 20k+3 + 212k+3 is divisible by 421.  Note that 


20k+3 + 212k+3 = 20 ( (20k+2 + 212k+1) – 20 ( 212k+1 + 212k+3  (by “algebra”)


= 20 ( 421m + 212k+1 ( (–20 + 212), by the Induction Hypothesis (and factoring)


= 20 ( 421m + 212k+1 ( 421


= 421 ( (20m + 212k+1), which is divisible by 421.

Thus, the Induction Step is proved.  

By induction we proved 421 | (20n+2 + 212n+1) for all integer n ( 0.

4. (10 pts.) Suppose a sequence a0, a1, …, an, … is defined by the following recurrence:

a0 = 6,  a1 = 13, and 
[image: image14.wmf]2
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Prove that the sequence an satisfies the formula an = 5 ( (3)n + (–2)n for all integer n ( 0.

Answer: We use strong induction on n ( 0.

(Basis Step) When n = 0, the formula for an = 5 ( (3)n + (–2)n = 5 + 1 = 6, which is equal to the given initial value of a0.  

When n = 1, the formula for an = 5 ( (3)n + (–2)n = 5 ( 3 + (–2) = 15 – 2 = 13, which is equal to the given initial value of a1.  

Thus, the basis Step is proved for both n = 0 and n = 1.

(Induction Hypothesis) Suppose an = 5 ( (3)n + (–2)n for all integer n in the range 0 ( n ( k for some k ( 1.

(Induction Step) Consider n = k + 1.  We need to prove ak+1 = 5 ( (3)k+1 + (–2) k+1 --- (1).

Note that ak+1 = ak + 6 ak–1 , using the recurrence since k + 1 ( 2

= (5 ( (3)k + (–2)k ) + 6 ( (5 ( (3)k–1 + (–2)k–1) by the Induction Hypothesis applied to n = k and to n = k – 1

= 5 ( (3)k + 6 ( 5 ( (3)k–1 + (–2)k + 6 ( (–2)k–1 by rearranging terms

= (3)k–1 (5 ( 3 + 6 ( 5) + (–2)k–1(  ((–2) + 6) by factoring

= (3)k–1( (45) + (–2)k–1( (4)

= (3)k–1( (32 ( 5) + (–2)k–1( (–2)2

= 5 ( (3)k+1 + (–2) k+1 = RHS of (1)

Thus, the Induction Step is proved.  


By induction we proved the formula an = 5 ( (3)n + (–2)n for all integer n ( 0.
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