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1. (16 pts., 4 pts. each part) Recall the following definitions and theorems about integers:

Definition. An integer a is even if a = 2b for some integer b.  (That is, there exists an integer b such that a = 2b.)

Definition. An integer a is odd if a = 2b + 1 for some integer b.  (That is, there exists an integer b such that a = 2b + 1.)

Definition. An integer a is a divisor of integer b, denoted a | b, if a ( 0 and there exists integer c such that b = ac.

Theorem. Each integer is either even or odd (but not both).

Theorem. The sum of two odd integers is even.

Theorem.  If the product of two integers is even, then at least one of them is even.  (Equivalently, the product of two odd integers is odd.)

Theorem.  If a | b and b | c, then a | c.

Use these definitions and theorems (and other appropriate algebra laws) to prove each of the following questions, where all variables refer to integers:

(a) If a is odd, then 3a + 4b is odd. 

Proof: Since a is odd (by assumption), and 3 is odd, so the product 3a is odd (by a theorem given above).  Thus, 3a = 2c + 1 --- (1), for some integer c, according to the definition of odd.  Therefore, 3a + 4b = (2c + 1) + 4b, according to (1)


= 2(c + 2b) + 1 --- (2)

which implies 3a + 4b is odd by the definition of odd, since (c + 2b) in (2) is an integer.

(b) If a – b is odd, then exactly one of the two integers a, b is odd; that is, either a is even and b is odd, or b is even and a is odd.  

Proof: We prove the contrapositive statement: If both a and b are even, or if both a and b are odd, then a – b is even.  To prove this, consider the two cases:

(Case 1) Suppose both a and b are even. Thus, a = 2m and b = 2n, for some integers m, n, by the definition of even.  Thus, a – b = 2m – 2n = 2(m – n), which is even by the definition of even.

(Case 2) Suppose both a and b are odd. Thus, a = 2m + 1, and b = 2n + 1, for some integers m, n, by the definition of odd.  Thus, a – b = (2m + 1) – (2n + 1) = 2(m – n), which is even by the definition of even.

Therefore, we proved that a – b is even in both cases.

(c) If a + b is even, then a2 + b2 is even.

Proof: Let a + b = 2m, for some integer m, since a + b is even by assumption.  

Thus, a2 + b2 = (a + b)2 – 2ab = 4m2 – 2ab = 2(2m2 – ab), which is even because (2m2 – ab) is an integer.

(d) If 3 | a2, then 3 | a.  (Hint: An integer n must be of one of the following forms: n = 3m, n = 3m + 1, or n = 3m + 2, for some integer m; that is, when dividing an integer by 3, the reminder is 0, 1, or 2.)
Proof: We prove the contrapositive statement: If 3 | a is false, then 3 | a2 is false.

Since 3 | a is false, when dividing a by 3 there are two cases for the remainder term: either the remainder is 1 or the remainder is 2.

(Case 1) Suppose a = 3m + 1 for some integer m (i.e., the remainder is 1).  

In this case, a2 = 9m2 + 6m + 1 = 3(3m2 + 2m) + 1, so 3 | a2 is false.

(Case 2) Suppose a = 3m + 2 for some integer m (i.e., the remainder is 2).  

In this case, a2 = 9m2 + 12m + 4 = 3(3m2 + 4m + 1) + 1, so 3 | a2 is false.

Thus, we proved that 3 | a2 is false is both cases.

2.  (12 pts., 4 pts. each part) Suppose a, b, and c denote integers and the following algebraic laws concerning inequalities are known:

Law A. (a > b and b > c) ( (a > c).  (This is the transitivity law, which also holds if all > signs are replaced by the ( signs, or if exactly one of the > sign on the lefthand side replaced by (.)

Law B. (a > b and c > 0) (  (ac > bc).  The law is also valid if each > sign is replaced by the ( sign.

Law C. (a > b) (  (a + c > b + c), for any c.  The law is also valid if each > sign is replaced by the ( sign.

Law D. (a > 0) (  ((a < 0).  Similarly, (a ( 0) (  ((a ( 0).

Law E. ab > 0 (  (a > 0 and b > 0) or (a < 0 and b < 0). The law is also valid if each > sign is replaced by the ( sign, and < replaced by (.

Now use these laws and other appropriate definitions and theorems, and logical reasoning, to prove, or to disprove, each of the following statements, where all symbols denote integers (positive, zero, or negative).  (Note: Recall that in the case of a disproof, you need to give a counter-example and explain why the example disproves the statement.)

(a) If a + b > 0 and a ( 0, then b > 0.

Proof: Since a ( 0 by assumption, so (a ( 0 --- (1) (Law D).  

Since a + b > 0 by assumption, so adding (a to both sides (by Law C) yields


(a + b) (a > (a, i.e., b > (a --- (2)

Combining (1) and (2), and applying the transitive law (Law A), we obtain 


b > 0.

(b) If a > 20 and b > 0, then a2 > 2b.

Disproof: We give a counter-example.  Let a = 21, b = 9.  Then, both a > 20 and b > 0 are true.  However, a2 = 441, and 2b = 512, so a2 > 2b is false.
(c) If a > bc and c > b, then a > b2.  

Disproof: We give a counter-example.  Let a = 1, b = (2, and c = 0.  

Then, a = 1 > bc = 0, and c = 0 > b = (2.  However, b2 = 4, so a = 1 > b2 is false.

3.  (5 pts.) Let A, B, and C each denote a positive integer less than 10 (i.e., 1 through 9).  Consider the 3-digit integer formed by ABC, i.e., A is the digit in the 100-place, B is the digit in the 10-place, and C is in the 1-place.  If A + C = B, then prove 11 | n.  For example, let A = 5, B = 9, and C = 4 (thus, A + C = B = 9), then n = 594 = 11 ( 54.  (Hint: numerically, n = 100A + 10B + C.)
Proof: Notice that 

n = 100A + 10B + C, by the definition of the notations n, A, B, and C

= (99A + 11B) + A ( B + C


= (99A + 11B), since A + C = B by assumption

= 11(9A + B).

Thus, we proved 11 | n.  
4. (7 pts.) Let p, q, and r denote propositions.  Prove the following logical implication using the truth table method:
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Notice that the last column of the truth table shows only True (T) values in each of the true/false combinations for the propositions p, q, and r.  Thus, we proved that the logical expression

((p ( r) and ((q (  r))  (   ((p or (q) (  r)

is always true.

