COT 3100 Homework # 5 Solutions

1) Fall 2000

2) Use Euclid’s Algorithm to find the greatest common divisor(GCD) of 245 and 455.

455 = 1x245 + 210

245 = 1x210 + 35

210 = 6x35

Thus, the gcd(455, 245) = 35.

3) Show that if 11 | (6x + 5y), then there are no integer solutions to the equation 

9x + 13y = 20000

4) Since 11 | (6x + 5y), we must have that 6x+5y = 11A, for some integer A.

9x + 13y = 33(x+y) – 4(6x+5y)  (You can verify this by multiplying out the right 






hand side.)


         = 11*3(x+y) – 4*11A


         = 11(3(x+y) – 4A)

      Thus, we can conclude that 11 | (9x + 13y).

      However, we can do long division to verify that 11 | 20000 is false. Thus, since one

      side of the equation is divisible by 11 and the other is not, the equation can never be

      true, thus having no integer solutions in x and y.

5) Prove that if 3 | 2x + 7y, then 60 | (20x – 80y).

6) Since 3 | 2x + 7y, 2x+7y = 3A for some integer A.

We must prove that 20x – 80y = 60c, for some integer c.

20x – 80y = 20(x – 4y)

                 = 20(3(x+y) – (x – 4y)), once again you can verify this by multiplying out

                                                         what is inside the parentheses.

                 = 20(3(x+y) – 3A)

                 =(20)(3)(x+y – A)

                 =60(x + y – A)

Thus we can conclude that 60 | (20x – 80y).

7) Using mod rules, find the remainder when you divide 5192 by 7.

5192 ( (52)96 (mod 7)

       ( (25)96 (mod 7)


 ( (4)96 (mod 7)


 ( (42)48 (mod 7)


 ( (16)48 (mod 7)


 ( (2)48 (mod 7)


 ( (23)16 (mod 7)


 ( (8)16 (mod 7)


 ( (1)16 (mod 7)


 ( 1 (mod 7)

      Thus, the desired remainder is 1.

8) Let a and b be two positive integer. If a is odd, show that 9ab + 5b2 is even.

First we will show that the product of two odd numbers is odd.

Let x and y be two odd numbers. Then we can express x=2x’ + 1 and y=2y’ + 1.

xy = (2x’ + 1)(2y’ + 1)

     = 4x’y’ + 2x’ + 2y’ + 1

     = 2(2x’y’ + x’ + y’) + 1

Since xy is of the form 2c+1, where c is an integer, xy must be odd.

Also, we will show that the sum of two odd numbers is even.

Let x and y be odd numbers represented as above. Then we have:

x + y = (2x’+1) + (2y’+1)

         = 2x’ + 2y’ + 2

         = 2(x’ + y’ + 1)

This value must be even since it is divisible by 2.

Now we are given that a is odd. Thus, we have two cases to consider:

     Case 1: b is even. Thus we can express b=2b’, where b’ is an integer.

       9ab + 5b2 = b(9a + 5b)

                  =2b’(9a + 5b)

                  =2(9ab’ + 5bb’)

In this case, we see that 9ab + 5b2 must be even since 2 is a factor of it.

Case 2: b is odd. 9ab is the product of three odd numbers. Since the products of two odds is odd, we know that 9a is odd. Thus, it’s product with b must be odd also. So, 9ab is odd. Similarly 5b2 is the product of three odds, thus by the previous argument it must also be odd. The sum of two odd numbers as given before is even.

9) We see in both cases the quantity 9ab + 5b2 is even. Since all possible values of a and b lie within one of these to cases, we can conclude that the quantity is always even in the given instance.

10) Using induction, prove that 11 | (72n – 42n) for all integers n ( 0.

Do induction on n.

11) Base Case: n=0. 72(0) – 42(0) = 1 – 1 = 0. This is divisible by 11, so the base case 






           works.

12) Inductive hypothesis: Assume for an arbitrary value of n=k, k( 0 that 11 | (72k – 42k)
Inductive Step: Now under that assumption we must show for n=k+1 that 

13) 11 | (72(k+1) – 42(k+1))
14) 72(k+1) – 42(k+1) = (72)72k – (42)42k
15) 

      = (49)72k – (16)42k
16) 
 
      = (33 + 16)72k – (16)42k
17) 

      = 33(72k) + 16(72k) – (16)42k
18) 

      = 33(72k) + 16[72k – 42k]

19) From the inductive hypothesis we have 11 | (72k – 42k), so we can express 

20) 72k – 42k = 11c, for some integer c.

21) 

      = 33(72k) + 16[11c], using inductive hypothesis

22) 

      = (3)(11)(72k) + 16[11c]

23) 

      = 11[3(72k) + 16c]

24) Thus, we have shown that 11 |72(k+1) – 42(k+1), completing the inductive step.

We can now conclude that 11 | (72n – 42n) for all integers n ( 0.

25) Using induction, show the following:
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 = (x – (n+1)xn+1 + nxn+2)/((1 – x)2).

Use induction on n.

Base case: n=1. LHS = x



        RHS = (x – 2x2 + x3)/((1 – x)2 = x(1 – 2x + x2)/(1 – 2x + x2) = x

Inductive hypothesis: Assume for an arbitrary value of n=m, that 
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 = (x – (m+1)xm+1 + mxm+2)/((1 – x)2).

       Inductive Step: Under this assumption show for n=m+1 that
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 = (x – (m+2)xm+2 + (m+1)xm+3)/((1 – x)2).
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 + (m+1)xm+1
            = (x – (m+1)xm+1 + mxm+2)/((1 – x)2) + (m+1)xm+1
            = [(x – (m+1)xm+1 + mxm+2) + (1 – x)2(m+1)xm+1]/((1 – x)2)

            = [(x – (m+1)xm+1 + mxm+2) + (1-2x+x2)(m+1)xm+1]/((1 – x)2)


      =[(x – (m+1)xm+1 + mxm+2) +(m+1)xm+1 –2(m+1)xm+2 + (m+1)xm+3]/((1 – x)2)


      =[(x + mxm+2 –2(m+1)xm+2 + (m+1)xm+3]/((1 – x)2)


      =[(x + xm+2(m –2(m+1)) + (m+1)xm+3]/((1 – x)2)


      =[(x + xm+2(m –2m – 2)) + (m+1)xm+3]/((1 – x)2)


      =[x + xm+2(–m – 2) + (m+1)xm+3]/((1 – x)2)


      = (x – (m+2)xm+2 + (m+1)xm+3)/((1 – x)2), proving the inductive step.

Thus we can conclude the summation given is true for all integral n > 0.

26) Define a recurrence relation g as follows:

g(0) = 2, g(1) = 3,

g(n) = 3g(n-1) + 4g(n-2), for all integers n>1.

Prove, using strong induction, that g(n) > 4n, for all n>1.

THIS IS FALSE. COMPUTING g(3) yields 63 which is less than 43. This question was thrown out.
27) The Fibonacci numbers are defined as follows:

F1 = F2 = 1, and Fn = Fn-1 + Fn-2 , for all integers n > 2.

Prove the following closed summation closed form using induction:
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= FnFn+1 , for integers n > 0. 
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We will use induction on n.

Base case: n=1. LHS = (F1)2 = 12 = 1



        RHS = F1F2 = (1)(1) = 1

Inductive hypothesis: Assume for an arbitrary value of n=k, k> 0, that 
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Inductive Step: Under this assumption show that for n=k+1 the following holds:
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+  (Fk+1)2
            = FkFk+1+  (Fk+1)2, using inductive hypothesis.


      = Fk+1(Fk + Fk+1)


      = Fk+1(Fk+2), using the defn of Fibonacci numbers.

This completes the inductive step. Thus we can conclude that the summation above is true for all integers values of n > 0.

10) Let g: A ( A be a bijection. For n ( 2, define gn = g ( g ( ... ( g, where g is composed with itself n times. Prove that for n ( 2, that gn is a bijection from A to A as well, and show that (gn)-1 = (g-1)n. (Here you may assume that the composition of two bijections is also a bijection.)

Use induction on n.

Base case: n=1. LHS = (g1)-1 = g-1, the inverse of g.



  RHS = (g-1)1 = g-1, also the inverse of g.

Inductive hypothesis: Assume for an arbitrary value of n=k that (gk)-1 = (g-1)k. 

Inductive step: Under this assumption we must show that (gk+1)-1 = (g-1)k+1.
(gk+1)-1 = (g ( gk)-1
            = (gk)-1 ( g-1, by the rule for the inverse of a function composition.


= (g-1)k ( g-1, by the inductive hypothesis


= (g-1)k+1, by the definition of function composition.

This proves the inductive step so we can conclude that (gn)-1 = (g-1)n is true for all n > 0.
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