Strings and Languages

A string is simply the concatenation of several letters in an alphabet. Typically, we will define an alphabet as a set (. So, for example, we could have (= {a,b}.

Then, a string over this alphabet (, would be any “word” formed with only the letters or characters a and b. There is no limit on the length of a string. It must simply be a non negative integer.

This means there is a string of length of length 0. This is known as the empty string. The empty string is typically denoted by (. In particular, if you concatenate the empty string with any other string, you get back that string. It seems silly to have an empty string, but it will help out in certain situations. Make sure you do not confuse the empty string with the empty set. Also, recognize that (can never be a letter of an alphabet.

In the book, they define non-empty strings in the following manner :

(n is a string of length n over the alphabet (, and is defined as below:

1) (1 = (.

2) (n+1 = {xy | x((, y((n}

And any string is simply a subset of (n, where n is a positive integer.

Using the book’s definition, we can define the following two sets:

(+ = (n=1 to ((n, or in English, (+ is the set of all strings of positive length over an alphabet (.

(* = (n=0 to ((n, or in English, (* is the set of all strings of over an alphabet (.

Now, that we have these definitions, we can define a language.

A language L over an alphabet (is any subset of (*. If a string w (L, then we say that the string w belongs in the language L. Otherwise we say w does not belong in L.

In this class, we will focus on a specific type of language: regular languages.

In particular, a language is a regular one if and only if it can be expressed as a regular expression. Here are the rules for forming a regular expression :

R is a regular expression if R is

1. a for some a((,

2. (,

3. (
4. (R1 (R2), where R1 and R2 are regular expressions

5. (R1 (R2), where R1 and R2 are regular expressions

6. (R*), where R is a regular expression

So, for example, here are some regular languages:

1. Any finite language: You can form each string in the language by concatenating elements from (together, and you can put these all together with (, to form the corresponding regular expression

2. {(ab)n | n (0}, the corresponding regular expression is (ab)*. (This language contains the strings (, ab, abab, ababab, etc.)

3. The regular expression for the set of all languages that end in bb is (a (b)*bb.

One thing to keep in mind is that we will be using letters to stand for BOTH elements of the alphabet AND languages themselves. I will try to stick to the convention that a lowercase letter signifies an element of an alphabet where as an UPPERCASE letter signifies an entire language.

You can essentially treat regular expressions identical to regular languages. The basic difference is that a language should be written out in a set format, but a regular expression is not.

Basic rules for regular expressions

(Note: each of these rules applies for languages as well.)

1. ((R = R ((= (
2. ((R = R ((= R

3. (* = (
4. (* = (
5. R1 (R2 = R2 (R1

6. R ((= R

7. R (R = R

8. (R*)* = R*

9. R1((R2 (R3) = R1(R2 (R1(R3

10. (R1 (R2) (R3 = R1(R3 (R2(R3

11. (R1(R2)*(R1 = R1((R2(R1)*

12. (R1(R2)* = (R1* (R2)* = R1*((R1(R2)*

Also, here is a rule for languages that will help with certain problems:

Let L1 and L2 be languages over the alphabet {1,b}. If L1 (L2, then we have L1*(L2*.

Consider trying to find the regular expression over (= {a,b} that denotes all strings that start with a and have an even number of b’s.

The regular expression is a(a*ba*b)*a*.

We can go through and formally prove this, but I will simply give you an intuitive argument as to why this works. Since we have 2 b’s inside of our star, and no others, any string that matches this regular expression MUST have an even number of b’s. Furthermore, any string with an even number of b’s will match this regular expression. (Consider that each b is separated by 0 or more a’s – let these a’s be matched by the corresponding a* inside the parentheses, and we can match any number of a’s at the end of the string as well. And of course, the first character is an a.)

Here is an example for you to try:

Find the regular expression for the set of strings that have no consecutive a’s in them.
